Пример

Решите иррациональное уравнение

Решение

Несомненно, сразу можно пробовать уединить радикал, после чего решать иррациональное уравнение методом возведения обеих частей уравнения в квадрат. Такой подход вполне имеет право на существование. Однако видно, что он приведет нас к необходимости решать уравнение четвертой степени. В нашем случае это уравнение имеет два рациональных корня, что позволяет найти все его корни и в итоге получить интересующее нас решение. Однако в общем случае решение уравнений четвертой степени сопряжено со значительными сложностями. Аналогично, к уравнению четвертой степени приводит и введение новой переменной . Так что пока оставим эти пути решения и посмотрим, нет ли альтернативной возможности.

Попробуем решить иррациональное уравнение через проведение преобразований. Перепишем уравнение в виде . Проделанное преобразование является равносильным преобразованием уравнения, так как состоит в замене выражения 1+x тождественно равным ему выражением , и при такой замене не изменяется область допустимых значений (она определяется условием 1+x≥0 как для исходного уравнения, так и для полученного). Мы провели это преобразование для того, чтобы отчетливо увидеть, что левая часть уравнения представляет собой некоторый аналог однородного многочлена 4·x2+12·x·y−27·y2. Типичным прием работы с такими многочленами состоит во введении новой переменной . По аналогии будем стремиться ввести новую переменную . Для этого нам нужно обе части иррационального уравнения разделить на одно и то же выражение , то есть, перейти к уравнению . И здесь возникает вопрос, а имеем ли мы право проводить такое деление? Мы знаем, что деление обеих частей уравнения на одно и то же выражение является равносильным преобразованием уравнения, если при этом не изменяется ОДЗ и это выражение не обращается на ней в нуль. Посмотрим, как у нас обстоят дела с этими условиями. При таком переходе у нас сужается ОДЗ: из нее пропадет число −1. А при каких значениях переменной выражение обращается в нуль на ОДЗ переменной x для исходного уравнения? При x=−1. Итак, все наши планы рушит минус единица. Другими словами, если бы область допустимых значений для исходного уравнения была бы не множеством [−1, +∞), а множеством (−1, +∞), то никаких проблем с намеченным делением у нас не было бы. Как же нам быть? Выход такой: отдельно проверить число −1, а дальше работать на множестве (−1, +∞).

Проверим, является ли x=−1 корнем исходного уравнения. Для этого осуществим проверку подстановкой. Имеем

Подстановка дала неверное числовое равенство, следовательно, x=−1 не является корнем решаемого уравнения.

Для остальных значений переменной из ОДЗ, то есть, на множестве (−1, +∞) мы можем проводить намеченное деление, то есть, переходить к уравнению и дальше

Теперь можно обращаться к методу введения новой переменной для решения иррационального уравнения. Принимаем , это дает квадратное уравнение 4·t2+12·t−27=0. Решаем его:

Возврат к старой переменной дает два уравнения: и . Решим их по очереди методом возведения обеих частей уравнений в квадрат:

Уравнение решено, осталось решить уравнение .

Таким образом, исходное иррациональное уравнение имеет два корня и 3.

Ответ:

, 3.

К началу страницы