Метод возведения обеих частей уравнения в одну и ту же степень

Продолжаем изучать методы решения уравнений. Сейчас мы в деталях разберем метод возведения обеих частей уравнения в одну и ту же степень. Начнем с теории: рассмотрим, для решения каких уравнений применяется метод, опишем, в чем он состоит, приведем теоретическое обоснование метода возведения обеих частей уравнения в одну и ту же степень, запишем соответствующие алгоритмы решения уравнений. После этого сосредоточимся на практике и рассмотрим разнообразные примеры решения уравнений методом возведения обеих частей уравнения в одну и ту же степень.

Для решения каких уравнений применяется

Метод возведения обеих частей уравнения в одну и ту же степень в первую очередь применяется для решения иррациональных уравнений. Это объясняется тем, что возведение в натуральную и большую единицы степень позволяет избавляться от корней. Например, возведение в степень позволяет избавляться от корней при решении следующих уравнений:

  • , C≥0, в частности, , и т.п. Возведение в квадрат обеих частей первого уравнения позволяет перейти к уравнению , и дальше – к сравнительно простому уравнению без знаков корней x2−5=4. Аналогично, возведение обеих частей второго уравнения в шестую степень приводит к уравнению и дальше - к элементарному уравнению 4−5·x=0.
  • , например, , и др. В первом случае избавиться от корня позволяет возведение обеих частей уравнения в квадрат, а во втором случае – в куб.
  • и , таких как , и подобные им. Для первого уравнения напрашивается возведение его обеих частей в квадрат, для второго – в шестую степень.
  • уравнений с двумя, тремя корнями в записи, например, и . В таких случаях для избавления от знаков радикалов к возведению обеих частей уравнения в одну и ту же степень приходится обращаться дважды: первый раз в самом начале, второй раз – после преобразований и уединения радикала.
  • уравнений, в которых под знаком корня находятся другие корни, к примеру, . Здесь также к возведению обеих частей уравнения в одну и ту же степень приходится прибегать два раза.
  • и это не весь список.

Метод возведения обеих частей уравнения в одну и ту же степень используется и для решения некоторых уравнений, в которых переменная находится в основаниях степеней с дробными показателями. Например, уравнение можно решить методом возведения его обеих частей в дробную степень 6/11.

Также метод возведения частей уравнения в степень применяется при решении некоторых степенных уравнений, в которых фигурируют иррациональные показатели. В пример приведем два уравнения и . Возведение их обеих частей в одну и ту же степень (в первом случае в степень , во втором – в степень ) позволяет избавиться от степеней с иррациональными показателями и перейти к сравнительно простым уравнениям.

К началу страницы

В чем состоит метод возведения обеих частей уравнения в одну и ту же степень

Метод состоит в переходе к уравнению, которое получается из исходного путем возведения его обеих частей в одну и ту же степень, и нахождении решения исходного уравнения по решению полученного уравнения.

На практике наиболее часто прибегают к возведению обеих частей уравнения в одну и ту же натуральную степень, большую единицы, то есть, в квадрат, куб и т.д. Делается это на базе следующего утверждения:

Утверждение

Возведение обеих частей уравнения в одну и ту же четную натуральную степень дает уравнение-следствие, а возведение обеих частей уравнения в одну и ту же нечетную натуральную степень, большую единицы, дает равносильное уравнение (см. равносильные уравнения и уравнения-следствия).

Реже приходится обращаться к возведению обеих частей уравнения в другие степени, в частности, в дробные рациональные и иррациональные. В этих случаях отталкиваются от такого утверждения:

Утверждение

Уравнение A(x)=B(x), на области допустимых значений переменной x для которого A(x)>0 или A(x)≥0, B(x)>0 или B(x)≥0, равносильно уравнению Ar(x)=Br(x), где r – положительное действительное число.

К началу страницы

Обоснование метода

Обоснованием метода возведения обеих частей уравнения в одну и ту же степень является доказательство утверждений из предыдущего пункта. Приведем эти доказательства.

Утверждение

Возведение обеих частей уравнения в одну и ту же четную натуральную степень дает уравнение-следствие, а возведение обеих частей уравнения в одну и ту же нечетную натуральную степень дает равносильное уравнение.

Доказательство

Докажем его для уравнений с одной переменной. Для уравнений с несколькими переменными принципы доказательства те же.

Пусть A(x)=B(x) – исходное уравнение и x0 – его корень. Так как x0 является корнем этого уравнения, то A(x0)=B(x0) – верное числовое равенство. Мы знаем такое свойство числовых равенств: почленное умножение верных числовых равенств дает верное числовое равенство. Умножим почленно 2·k, где k – натуральное число, верных числовых равенств A(x0)=B(x0), это нам даст верное числовое равенство A2·k(x0)=B2·k(x0). А полученное равенство означает, что x0 является корнем уравнения A2·k(x)=B2·k(x), которое получено из исходного уравнения путем возведения его обеих частей в одну и ту же четную натуральную степень 2·k.

Для обоснования возможности существования корня уравнения A2·k(x)=B2·k(x), который не является корнем исходного уравнения A(x)=B(x), достаточно привести пример. Рассмотрим иррациональное уравнение , и уравнение , которое получено из исходного путем возведением его обеих частей в квадрат. Несложно проверить, что нуль является корнем уравнения , действительно, , что то же самое 4=4 - верное равенство. Но при этом нуль является посторонним корнем для уравнения , так как после подстановки нуля получаем равенство , что то же самое 2=−2, которое неверное. Этим доказано, что уравнение, полученное из исходного путем возведения его обеих частей в одну и ту же четную степень, может иметь корни, посторонние для исходного уравнения.

Так доказано, что возведение обеих частей уравнения в одну и ту же четную натуральную степень приводит к уравнению-следствию.

Остается доказать, что возведение обеих частей уравнения в одну и ту же нечетную натуральную степень дает равносильное уравнение.

Покажем, что каждый корень уравнения является корнем уравнения, полученного из исходного путем возведения его обеих частей в нечетную степень, и обратно, что каждый корень уравнения, полученного из исходного путем возведения его обеих частей в нечетную степень, является корнем исходного уравнения.

Пусть перед нами уравнение A(x)=B(x). Пусть x0 – его корень. Тогда является верным числовое равенство A(x0)=B(x0). Изучая свойства верных числовых равенств, мы узнали, что верные числовые равенства можно почленно умножать. Почленно умножив 2·k+1, где k – натуральное число, верных числовых равенств A(x0)=B(x0) получим верное числовое равенство A2·k+1(x0)=B2·k+1(x0), которое означает, что x0 является корнем уравнения A2·k+1(x)=B2·k+1(x). Теперь обратно. Пусть x0 – корень уравнения A2·k+1(x)=B2·k+1(x). Значит числовое равенство A2·k+1(x0)=B2·k+1(x0) - верное. В силу существования корня нечетной степени из любого действительного числа и его единственности будет верным и равенство . Оно в свою очередь в силу тождества , где a – любое действительное число, которое следует из свойств корней и степеней, может быть переписано как A(x0)=B(x0). А это означает, что x0 является корнем уравнения A(x)=B(x).

Так доказано, что возведение обеих частей иррационального уравнения в нечетную степень дает равносильное уравнение.

Доказанное утверждение пополняет известный нам арсенал, использующийся для решения уравнений, еще одним преобразованием уравнений – возведением обеих частей уравнения в одну и ту же натуральную степень. Возведение в одну и ту же четную степень обеих частей уравнения является преобразованием, приводящим к уравнению-следствию, а возведение в нечетную степень – равносильным преобразованием. На этом преобразовании базируется метод возведения обеих частей уравнения в одну и ту же степень.

Утверждение, касающееся возведения обеих частей уравнения в одну и ту же положительную действительную степень, доказывается аналогично с опорой на единственность степени положительного числа с действительным показателем.

К началу страницы

Алгоритмы решения уравнений методом возведения частей в одну и ту же степень

Есть смысл записать три алгоритма решения уравнений методом возведения обеих частей уравнения в одну и ту же степень: первый – для возведения в нечетную степень, второй – для возведения в четную степень, третий – для возведения в ненатуральную положительную степень.

Алгоритм решения уравнений методом возведения обеих частей в одну и ту же нечетную степень:

  1. Обе части уравнения возводятся в одну и ту же нечетную степень 2·k+1.
  2. Решается полученное уравнение. Его решение есть решение исходного уравнения.

Алгоритм решения уравнений методом возведения обеих частей в одну и ту же четную степень:

  1. Обе части уравнения возводятся в одну и ту же четную степень 2·k.
  2. Решается полученное уравнение.
    • Если полученное уравнение не имеет корней, то делается вывод об отсутствии корней у исходного уравнения.
    • Если полученное уравнение имеет корни, то проводится отсеивание посторонних корней любым методом, не завязанным на области допустимых значений, например, через проверку подстановкой.

Обратите внимание: этот алгоритм, в отличие от предыдущего, содержит пункт, касающийся отсеивания посторонних корней. Это связано с тем, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к равносильному уравнению, а возведение обеих частей уравнения в четную степень в общем случае приводит к уравнению-следствию. Поэтому, в результате возведения в нечетную степень посторонние корни не возникают, а при возведении в четную степень посторонние корни могут появиться. Таким образом, при возведении частей уравнения в четную степень возникает необходимость в отсеивании посторонних корней. Почему отсеивание посторонних корней в этом случае нужно проводить методом, не использующим ОДЗ? Потому что возведение обеих частей уравнения в четную степень может приводить к появлению посторонних корней в пределах ОДЗ, и отсеять их по ОДЗ или по условиям ОДЗ невозможно.

Наконец, запишем алгоритм решения уравнений методом возведения обеих частей в одну и ту же положительную дробную рациональную или иррациональную степень:

  1. Убеждаемся, что выражения в левой и правой части уравнения не принимают отрицательных значений на ОДЗ для решаемого уравнения.
  2. Возводим обе части уравнения в одну и ту же положительную степень.
  3. Решаем полученное уравнение. Его решение дает искомое решение исходного уравнения.

К началу страницы

Примеры решения уравнений методом возведения обеих частей уравнения в одну и ту же степень

Большое количество попадающих под разбираемую тему примеров с подробными решениями приведено в статье решение иррациональных уравнений методом возведения обеих частей в одну и ту же степень. В добавление к этим примерам стоит разобрать решение уравнения через возведение обеих частей уравнения в одну и ту же степень, не являющуюся натуральным числом.

Пример

Решите уравнение

Решение

Решать заданное уравнение можно несколькими разными методами. Например, можно провести решение методом логарифмирования. Также можно преобразовать уравнение к виду и перейти к уравнению на основании метода освобождения от внешней функции, или, сославшись на единственность степени с данным основанием и данным показателем. Но в рамках текущей статьи нас интересует решение уравнения методом возведения его обеих частей в одну и ту же степень, поэтому, проведем решение именно этим методом.

Учитывая свойство степени в степени (см. свойства степеней), несложно догадаться, что избавиться от иррациональных показателей позволяет возведение обеих частей уравнения в степень . Здесь мимоходом заметим, что - положительное число (при необходимости смотрите сравнение чисел), и при этом не натуральное. Мы вправе осуществить задуманное возведение частей уравнения в положительную ненатуральную степень, так как степени, находящиеся в левой и правой части исходного уравнения, на ОДЗ для исходного уравнения не принимают отрицательных значений. При этом мы получим равносильное уравнение, что было обосновано в одном из предыдущих пунктов текущей статьи.

Итак, проводим возведение обеих частей уравнения в одну и ту же степень . Имеем . Это уравнение равносильно исходному, значит, решив его, мы будем иметь интересующее нас решение.

Решаем полученное уравнение:

Так мы пришли к кубическому уравнению x3−x2+2=0. Один его корень x=−1 легко подбирается. Разделив многочлен x3−x2+2 на двучлен x+1, получаем возможность представить кубическое уравнение в виде (x+1)·(x2−2·x+2)=0. Квадратное уравнение x2−2·x+2=0 не имеет решений, так как его дискриминант отрицательный. Из этого заключаем, что уравнение x3−x2+2=0 имеет единственный корень x=−1.

В процессе решения мы дважды отмечали, что нам будет необходимо сделать проверку найденных корней. Сейчас пришло это время. Проверку выполним через подстановку найденного корня x=−1 в исходное уравнение , имеем

Ответ:

−1.

К началу страницы