Операции над векторами и их свойства.
В этой статье мы рассмотрим операции, которые можно производить с векторами на плоскости и в пространстве. Далее мы перечислим свойства операций над векторами и обоснуем их с помощью геометрических простроений. Также покажем применение свойств операций над векторами при упрощении выражений, содержащих векторы.
Для более качественного усвоения материала рекомендуем освежить в памяти понятия, данные в статье векторы - основные определения.
Операция сложения двух векторов - правило треугольника.
Покажем как происходит сложение двух векторов.
Сложение векторов и происходит так: от произвольной точки A откладывается вектор , равный , далее от точки B откладываеься вектор , равный , и вектор представляет собой сумму векторов и . Такой способ сложения двух векторов называется правилом треугольника.
Проиллюстрируем сложение не коллинеарных векторов на плоскости по правилу треугольника.
А на чертеже ниже показано сложение сонаправленных и противоположно направленных векторов.
Сложение нескольких векторов - правило многоугольника.
Основываясь на рассмотренной операции сложения двух векторов, мы можем сложить три вектора и более. В этом случае складываются первые два вектора, к полученному результату прибавляется третий вектор, к получившемуся прибавляется четвертый и так далее.
Сложение нескольких векторов выполняется следующим построением. От произвольной точки А плоскости или пространства откладывается вектор, равный первому слагаемому, от его конца откладывается вектор, равный второму слагаемому, от его конца откладывается третье слагаемое, и так далее. Пусть точка B - это конец последнего отложенного вектора. Суммой всех этих векторов будет вектор .
Сложение нескольких векторов на плоскости таким способом называется правилом многоугольника. Приведем иллюстрацию правила многоугольника.
Абсолютно аналогично производится сложение нескольких векторов в пространстве.
Операция умножения вектора на число.
Сейчас разберемся как происходит умножение вектора на число.
Умножение вектора на число k соответствует растяжению вектора в k раз при k > 1 или сжатию в раз при 0 < k < 1, при k = 1 вектор остается прежним (для отрицательных k еще изменяется направление на противоположное). Если произвольный вектор умножить на ноль, то получим нулевой вектор. Произведение нулевого вектора и произвольного числа есть нулевой вектор.
К примеру, при умножении вектора на число 2 нам следует вдвое увеличить его длину и сохранить направление, а при умножении вектора на минус одну треть следует уменьшить его длину втрое и изменить направление на противоположное. Приведем для наглядности иллюстрацию этого случая.
Свойства операций над векторами.
Итак, мы определили операцию сложения векторов и операцию умножения вектора на число. При этом для любых векторов и произвольных действительных чисел можно при помощи геометрических построений обосновать следующие свойства операций над векторами. Некоторые из них очевидны.
-
Свойство коммутативности .
-
Свойство ассоциативности сложения .
- Существует нейтральный элемент по сложению, которым является нулевой вектор , и . Это свойство очевидно.
- Для любого ненулевого вектора существует противоположный вектор и верно равенство . Это свойство очевидно без иллюстрации.
- Сочетательное свойство умножения . К примеру, растяжение вектора в 6 раз можно произвести, если сначала его растянуть вдвое и полученный вектор растянуть еще втрое. Аналогичного результата можно добиться, например, сжав вектор вдвое, а полученный вектор растянуть в 12 раз.
- Первое распределительное свойство . Это свойство достаточно очевидно.
-
Второе распределительное свойство . Это свойство справедливо в силу подобия треугольников, изображенных ниже.
- Нейтральным числом по умножению является единица, то есть, . При умножении вектора на единицу с ним не производится никаких геометрических преобразований.
Рассмотренные свойства дают нам возможность преобразовывать векторные выражения.
Свойства коммутативности и ассоциативности операции сложения векторов позволяют складывать векторы в произвольном порядке.
Операции вычитания векторов как таковой нет, так как разность векторов и есть сумма векторов и .
Учитывая рассмотренные свойства операций над векторами, мы можем в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, выполнять преобразования так же как и в числовых выражениях.
Разберем на примере.
Пример.
Упростите выражение, содержащее векторы .
Решение.
Если воспользоваться вторым распределительным свойством операции умножения вектора на число, то получим .
В силу сочетательного свойства умножения имеем .
Свойство коммутативности операции сложения векторов позволяет поменять местами второе и третье слагаемые , а по первому распределительному свойству имеем .
А теперь запишем кратко: .
Ответ:
.
Список литературы.
- Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
Некогда разбираться?