Системы, решение систем уравнений и неравенств Помощь в написании работ

Равносильные совокупности


Отношением равносильности могут быть связаны не только уравнения, неравенства и их системы, но и совокупности. В этой статье мы дадим это определение равносильных совокупностей, приведем примеры, а также рассмотрим основные преобразования, позволяющие получить совокупность, равносильную данной.


Определение равносильных совокупностей

Определение равносильных совокупностей можно дать по аналогии с определением равносильных систем уравнений или неравенств. Приведем такую его формулировку:

Определение.

Две совокупности называются равносильными, если они имеют одинаковые решения или они обе не имеют решений.

В нем ничего не говорится о составляющих совокупность элементах, то есть, это определение относится как к совокупностям уравнений, так и к совокупностям неравенств, систем, других совокупностей и их всевозможным сочетаниям.

Примеры равносильных совокупностей приведем в следующем пункте.

Равносильны ли данные совокупности?


Озвученное определение позволяет делать вывод о равносильности совокупностей по их решениям. То есть, если нам известны решения данных совокупностей, то мы можем сразу сказать, равносильны они или нет.

Например, пусть нам известно, что решением совокупности является числовой промежуток [−5, 5), а решением совокупности - множество (−7, −3)∪[1, +∞). Очевидно, указанные совокупности имеют разные решения, поэтому, по определению они не являются равносильными.

Еще пример. Пусть даны две совокупности и , и сказано, что они не имеют решений. Из определения сразу заключаем, что такие совокупности равносильны.

Интереснее обстоит дело, когда решения совокупностей неизвестны, а нужно выяснить, равносильны они или нет. В этих случаях при возможности можно найти решения совокупностей, откуда сделать вывод относительно их равносильности. Но иногда возможно обойтись и без поиска решений. К примеру, равносильны ли совокупности и ? Очевидно, да. Они различаются лишь порядком записи уравнений, а это не влияет на их решения, и понятно, что решения этих совокупностей одинаковы. Так мы плавно подошли к так называемым равносильным преобразованиям совокупностей, перестановка местами уравнений является одним из них. В результате их проведения одна совокупность преобразуется в другую, равносильную ей. Познакомимся с ними поближе.

Равносильные преобразования совокупностей

Стоит обратить внимание на два основных вида равносильных преобразований совокупностей.

Первый из них – это перестановка местами элементов совокупности. Понятно, что в результате такого преобразования совокупности ее решения не изменятся, а значит, полученная совокупность будет равносильна исходной. Пример подобного преобразования совокупностей мы привели немного выше в предыдущем пункте.

Второе равносильное преобразование – это замена элемента совокупности равносильным ему элементом, например, замена уравнения равносильным ему уравнением. Очевидно, что полученная после такого преобразования совокупность будет иметь те же решения, что и исходная. Приведем пример: в совокупности первое уравнение можно заменить равносильным ему уравнением 2·x=3, полученным в результате раскрытия скобок и приведения подобных слагаемых. Так совокупность заменится равносильной ей совокупностью более простого вида .

Разобранное преобразование позволяет работать не со всей совокупностью в целом, а с ее отдельными уравнениями, неравенствами и т.п., что очень полезно при решении совокупностей.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+