Числа, действия с числами Помощь в написании работ

Сумма разрядных слагаемых натурального числа.


Для выполнения некоторых действий над натуральными числами приходится представлять эти натуральные числа в виде суммы разрядных слагаемых или, как еще говорят, раскладывать натуральные числа по разрядам. Не менее важным является обратный процесс - запись натурального числа по сумме разрядных слагаемых.

В этой статье мы очень подробно на примерах разберемся с представлением натуральных чисел в виде суммы разрядных слагаемых, а также научимся записывать натуральное число по его известному разложению по разрядам.


Представление натурального числа в виде суммы разрядных слагаемых.

Как видите, в названии статьи фигурируют слова «сумма» и «слагаемые», поэтому для начала мы рекомендуем хорошо разобраться в информации статьи общее представление о сложении натуральных чисел. Также не помешает повторить материал из раздела разряд, значение разряда натурального числа.

Давайте примем на веру следующие утверждения, которые помогут нам дать определение разрядных слагаемых.

Разрядными слагаемыми могут быть только натуральные числа, записи которых содержат единственную цифру, отличную от цифры 0. Например, натуральные числа 5, 10, 400, 20 000 и т.п. могут быть разрядными слагаемыми, а числа 14, 201, 5 500, 15 321 и т.п. – не могут.

Количество разрядных слагаемых данного натурального числа должно быть равно количеству цифр в записи данного числа, отличных от цифры 0. Например, натуральное число 59 можно представить в виде суммы двух разрядных слагаемых, так как в записи этого числа участвуют две цифры (5 и 9), отличные от 0. А сумма разрядных слагаемых натурального числа 44 003 будет состоять из трех слагаемых, так как запись числа содержит три цифры 4, 4 и 3, которые отличаются от цифры 0.

Все разрядные слагаемые данного натурального числа в своей записи содержат разное количество знаков.

Сумма разрядных слагаемых данного натурального числа должна быть равна данному числу.

Теперь мы можем дать определение разрядных слагаемых.

Определение.

Разрядные слагаемые данного натурального числа – это такие натуральные числа,

  • в записи которых только одна цифра, отличная от цифры 0;
  • количество которых равно количеству цифр в данном натуральном числе, отличных от цифры 0;
  • записи которых состоят из разного количества знаков;
  • сумма которых равна данному натуральному числу.

Из приведенного определения следует, что однозначные натуральные числа, а также многозначные натуральные числа, записи которых полностью состоят из цифр 0, за исключением первой цифры слева, не раскладываются в сумму разрядных слагаемых, так как сами являются разрядными слагаемыми некоторых натуральных чисел. Остальные натуральные числа могут быть представлены в виде суммы разрядных слагаемых.

Осталось разобраться с представлением натуральных чисел в виде суммы разрядных слагаемых.

Для этого нужно вспомнить, что натуральные числа по своей сути связаны с количеством некоторых предметов, при этом в записи числа значения разрядов задают соответствующие количества единиц, десятков, сотен, тысяч, десятков тысяч и так далее. Например, натуральное число 48 отвечает 4 десяткам и 8 единицам, а число 105 070 соответствует 1 сотне тысяч, 5 тысячам и 7 десяткам. Тогда в силу смысла сложения натуральных чисел справедливы следующие равенства 48=40+8 и 105 070=100 000+5 000+70. Так мы представили натуральные числа 48 и 105 070 в виде суммы разрядных слагаемых.

Рассуждая аналогичным образом, мы можем любое натуральное число разложить по разрядам.

Приведем еще один пример. Представим натуральное число 17 в виде суммы разрядных слагаемых. Число 17 соответствует 1 десятку и 7 единицам, поэтому 17=10+7. Это и есть разложение числа 17 по разрядам.

А вот сумма 9+8 не является суммой разрядных слагаемых натурального числа 17, так как в сумме разрядных слагаемых не может быть двух чисел, записи которых состоят из одинакового количества знаков.

Теперь стало понятно, почему разрядные слагаемые называются именно разрядными. Это связано с тем, что каждое разрядное слагаемое является «представителем» своего разряда данного натурального числа.

Нахождение натурального числа по известной сумме разрядных слагаемых.


Рассмотрим обратную задачу. Будем считать, что нам дана сумма разрядных слагаемых некоторого натурального числа, и нужно найти это число. Для этого можно представить, что каждое из разрядных слагаемых написано на прозрачной пленке, но области с цифрами, отличными от цифры 0, не прозрачны. Чтобы получить искомое натуральное число нужно как бы «наложить» друг на друга все разрядные слагаемые, совмещая их правые края.

К примеру, сумма 300+20+9 представляет собой разложение по разрядам числа 329, а сумма разрядных слагаемых вида 2 000 000+30 000+3 000+400 соответствует натуральному числу 2 033 400. То есть, 300+20+9=329, а 2 000 000+30 000+3 000+400=2 033 400.

Чтобы найти натуральное число по известной сумме разрядных слагаемых, можно сложить столбиком эти разрядные слагаемые (при необходимости обращайтесь к материалу статьи сложение натуральных чисел столбиком). Разберем решение примера.

Найдем натуральное число, если дана сумма разрядных слагаемых вида 200 000+40 000+50+5. Записываем числа 200 000, 40 000, 50 и 5 так, как того требует способ сложения столбиком:

Осталось сложить числа по столбцам. Для этого нужно помнить, что сумма нулей равна нулю, а сумма нулей и натурального числа равна этому натуральному числу. Получаем

Под горизонтальной линией мы получили искомое натуральное число 240 055, сумма разрядных слагаемых которого имеет вид 200 000+40 000+50+5.

В заключении хочется обратить Ваше внимание еще на один момент. Навыки разложения натуральных чисел по разрядам и умение выполнения обратного действия позволяют представлять натуральные число в виде суммы слагаемых, не являющихся разрядными. Например, разложение по разрядам натурального числа 725 имеет следующий вид 725=700+20+5, а сумму разрядных слагаемых 700+20+5 в силу свойств сложения натуральных чисел можно представить как (700+20)+5=720+5 или 700+(20+5)=700+25, или (700+5)+20=705+20.

Возникает логичный вопрос: «Для чего это нужно»? Ответ прост: в некоторых случаях это может упростить вычисления. Приведем пример. Выполним вычитание натуральных чисел 5 677 и 670. Сначала представим уменьшаемое в виде суммы разрядных слагаемых: 5 677=5 000+600+70+7. Несложно заметить, что полученная сумма разрядных слагаемых равна сумме (5 000+7)+(600+70)=5 007+670. Тогда
5 677−670=(5 007+670)−670=5 007+(670−670)=5 007+0=5 007.

Список литературы.

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+