Числа, действия с числами

Рациональные числа, определение, примеры.


В этой статье мы начнем изучать рациональные числа. Здесь мы дадим определения рациональных чисел, дадим необходимые пояснения и приведем примеры рациональных чисел. После этого остановимся на том, как определить, является ли данное число рациональным или нет.


Определение и примеры рациональных чисел

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа, подобно тому, как целые числа объединяют натуральные числа, противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел, которое воспринимается наиболее естественно.

Определение.

Рациональные числа – это числа, которые можно записать в виде положительной обыкновенной дроби , отрицательной обыкновенной дроби или числа нуль.

Из озвученного определения следует, что рациональным числом является:

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел. Числа 4, 903, 100 321 – это рациональные числа, так как они натуральные. Целые числа 58, −72, 0, −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9, 99/3, - это тоже примеры рациональных чисел. Рациональными числами являются и числа .

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n, где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления, тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и . Таким образом, , что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа −5, 0, 3, и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5, 0, −13, представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0, 0,0, −13,0, 0,8 и −7,(18).

Закончим теорию этого пункта следующими утверждениями:

Является ли данное число рациональным?


В предыдущем пункте мы выяснили, что любое натуральное число, любое целое число, любая обыкновенная дробь, любое смешанное число, любая конечная десятичная дробь, а также любая периодическая десятичная дробь является рациональным числом. Это знание нам позволяет «узнавать» рациональные числа из множества написанных чисел.

Но как быть, если число задано в виде некоторого числового выражения, или как корень, степень, логарифм и т.п., как ответить на вопрос, является ли данное число рациональным? Во многих случаях ответить на него очень сложно. Укажем некоторые направления ходу мысли.

Если число задано в виде числового выражения, которое содержит лишь рациональные числа и знаки арифметических действий (+, −, · и :), то значение этого выражения представляет собой рациональное число. Это следует из того, как определены действия с рациональными числами. Например, выполнив все действия в выражении , мы получаем рациональное число 18.

Иногда, после упрощения выражений и более сложного вида, появляется возможность определить, рационально ли заданное число.

Пойдем дальше. Число 2 является рациональным числом, так как любое натуральное число является рациональным. А как насчет числа ? Является ли оно рациональным? Оказывается, что нет, - не является рациональным числом, это иррациональное число (доказательство этого факта методом от противного приведено в учебнике по алгебре за 8 класс, указанном ниже в списке литературы). Также доказано, что квадратный корень из натурального числа является рациональным числом только в тех случаях, когда под корнем находится число, являющееся полным квадратом некоторого натурального числа. Например, и - рациональные числа, так как 81=92 и 1 024=322, а числа и не являются рациональными, так как числа 7 и 199 не являются полными квадратами натуральных чисел.

А число рационально или нет? В данном случае несложно заметить, что , следовательно, данное число – рациональное. А является ли число рациональным? Доказано, что корень k-ой степени из целого числа является рациональным числом только тогда, когда число под знаком корня является k-ой степенью некоторого целого числа. Поэтому не является рациональным числом, так как не существует целого числа, пятая степень которого равна 121.

Метод от противного позволяет доказывать, что логарифмы некоторых чисел по некоторым основаниям не являются рациональными числами. Для примера докажем, что - не рациональное число.

Предположим противное, то есть, допустим, что - рациональное число и его можно записать в виде обыкновенной дроби m/n. Тогда свойства логарифма и свойства степени дают следующие равенства: . Последнее равенство невозможно, так как в левой его части находится нечетное число 5n, а в правой части – четное число 2m. Следовательно, наше предположение неверно, таким образом, не является рациональным числом.

В заключение стоит особо отметить, что при выяснении рациональности или иррациональности чисел следует воздержаться от скоропостижных выводов.

Например, не стоит сразу утверждать, что произведение иррациональных чисел π и e является иррациональным числом, это «как бы очевидно», но не доказано. При этом возникает вопрос: «А с чего бы произведению быть рациональным числом»? А почему бы и нет, ведь можно привести пример иррациональных чисел, произведение которых дает рациональное число: .

Также неизвестно, являются ли числа и многие другие числа рациональными или не являются таковыми. Например, существуют иррациональные числа, иррациональная степень которых является рациональным числом. Для иллюстрации приведем степень вида , основание данной степени и показатель степени не являются рациональными числами, но , а 3 – рациональное число.



Некогда разбираться?

Закажите решение

Список литературы.

  • Математика. 6 класс : учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Профиль автора статьи в Google+