Числа, действия с числами Помощь в написании работ

Смешанные числа, перевод смешанного числа в неправильную дробь и обратно.


В этой статье мы поговорим про смешанные числа. Сначала дадим определение смешанных чисел и приведем примеры. Дальше остановимся на связи между смешанными числами и неправильными дробями. После этого покажем, как перевести смешанное число в неправильную дробь. Наконец, изучим обратный процесс, который называется выделением целой части из неправильной дроби.


Смешанные числа, определение, примеры

Математики договорились, что сумму n+a/b, где n - натуральное число, a/b – правильная обыкновенная дробь, можно записывать без знака сложения в виде . Например, сумму 28+5/7 можно кратко записать как . Такую запись назвали смешанной, а число, которое соответствует данной смешанной записи, назвали смешанным числом.

Так мы подошли к определению смешанного числа.

Определение.

Смешанное число – это число, равное сумме натурального числа n и правильной обыкновенной дроби a/b, и записанное в виде . При этом число n называют целой частью числа, а число a/b называют дробной частью числа.

По определению смешанное число равно сумме свой целой и дробной части, то есть, справедливо равенство , которое можно записать и так: .

Приведем примеры смешанных чисел. Число - это смешанное число, натуральное число 5 – целая часть числа , а - дробная часть числа . Другими примерами смешанных чисел являются .

Иногда можно встретить числа в смешанной записи, но имеющие дробной частью неправильную дробь, например, или . Эти числа понимают как сумму их целой и дробной части, например, и . Но такие числа не подходят под определение смешанного числа, так как дробной частью смешанных чисел должна быть правильная дробь.

Число - это тоже не смешанное число, так как 0 не натуральное число.

Связь между смешанными числами и неправильными дробями


Проследить связь между смешанными числами и неправильными дробями лучше всего на примерах.

Пусть на подносе лежит торт и еще 3/4 такого же торта. То есть, по смыслу сложения на подносе находится 1+3/4 торта. Записав последнюю сумму в виде смешанного числа, констатируем, что на подносе находится торта. Теперь целый торт разрежем на 4 равные доли. В результате на подносе окажется 7/4 торта. Понятно, что «количество» торта при этом не изменилось, поэтому .

Из рассмотренного примера явно видна такая связь: любое смешанное число можно представить в виде неправильной дроби.

А теперь пусть на подносе находятся 7/4 торта. Сложив из четырех долей целый торт, на подносе окажется 1+3/4, то есть, торта. Отсюда видно, что .

Из этого примера понятно, что неправильную дробь можно представить в виде смешанного числа. (В частном случае, когда числитель неправильной дроби делится нацело на знаменатель, неправильную дробь можно представить в виде натурального числа, например, , так как 8:4=2).

Перевод смешанного числа в неправильную дробь

Для выполнения различных действий со смешанными числами оказывается полезным навык представления смешанных чисел в виде неправильных дробей. В предыдущем пункте мы выяснили, что любое смешанное число можно перевести в неправильную дробь. Пришло время разобраться, как осуществляется такой перевод.

Запишем алгоритм, показывающий как перевести смешанное число в неправильную дробь:

Рассмотрим пример перевода смешанного числа в неправильную дробь.

Пример.

Представьте смешанное число в виде неправильной дроби.

Решение.

Выполним все необходимые шаги алгоритма.

Смешанное число равно сумме его целой и дробной части: .

Записав число 5 как 5/1, последняя сумма примет вид .

Чтобы закончить перевод исходного смешанного числа в неправильную дробь, осталось выполнить сложение дробей с разными знаменателями: .

Краткая запись всего решения такова: .

Ответ:

.

Итак, чтобы осуществить перевод смешанного числа в неправильную дробь, нужно выполнить следующую цепочку действий: . В итоге получена формула перевода смешанного числа в неправильную дробь , которую мы и будем использовать в дальнейшем.

Пример.

Запишите смешанное число в виде неправильной дроби.

Решение.

Воспользуемся формулой для перевода смешанного числа в неправильную дробь. В этом примере n=15, a=2, b=5. Таким образом, .

Ответ:

.

Выделение целой части из неправильной дроби

В ответе не принято записывать неправильную дробь. Неправильную дробь предварительно заменяют либо равным ей натуральным числом (когда числитель делится нацело на знаменатель), либо проводят так называемое выделение целой части из неправильной дроби (когда числитель не делится нацело на знаменатель).

Определение.

Выделение целой части из неправильной дроби – это замена дроби равным ей смешанным числом.

Осталось узнать, как можно выделить целую часть из неправильной дроби.

Это очень просто: неправильная дробь a/b равна смешанному числу вида , где q - неполное частное, а r – остаток от деления a на b. То есть, целая часть равна неполному частному от деления a на b, а остаток равен числителю дробной части.

Докажем это утверждение.

Для этого достаточно показать, что . Переведем смешанное в неправильную дробь так, как мы это делали в предыдущем пункте: . Так как q – неполное частное, а r – остаток от деления a на b, то справедливо равенство a=b·q+r (при необходимости смотрите деление с остатком). Следовательно, , поэтому , что и требовалось показать.

Итак, правило выделения целой части из неправильной дроби a/b таково:

Рассмотрим решение примера.

Пример.

Выделите целую часть из дроби 104/7.

Решение.

Выполним деление столбиком:

Так деление числителя a=118 на знаменатель b=7 дает неполное частное q=16 и остаток r=6.

Таким образом, неправильная дробь 118/7 равна смешанному числу .

Ответ:

.

Для полноты картины рассмотрим, как неправильная дробь a/b, числитель которой делится нацело на знаменатель, заменяется натуральным числом.

Пусть a:b=c. Вспомнив про связь обыкновенных дробей с делением, мы можем записать следующие равенства , то есть, неправильную дробь a/b можно заменить натуральным числом c.

Например, в ответе вместо неправильной дроби 27/3 записывают равное ей натуральное число 9, так как .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+