Числа, действия с числами

Перевод обыкновенной дроби в десятичную дробь и обратно, правила, примеры.


В этой статье мы разберем, как осуществляется перевод обыкновенных дробей в десятичные дроби, а также рассмотрим обратный процесс – перевод десятичных дробей в обыкновенные дроби. Здесь мы озвучим правила обращения дробей и приведем подробные решения характерных примеров.


Перевод обыкновенных дробей в десятичные дроби

Обозначим последовательность, в которой мы будем разбираться с переводом обыкновенных дробей в десятичные дроби.

Сначала мы рассмотрим, как обыкновенные дроби со знаменателями 10, 100, 1 000, … представить в виде десятичных дробей. Это объясняется тем, что десятичные дроби по сути являются компактной формой записи обыкновенных дробей со знаменателями 10, 100, ….

После этого мы пойдем дальше и покажем, как любую обыкновенную дробь (не только со знаменателями 10, 100, …) записать в виде десятичной дроби. При таком обращении обыкновенных дробей получаются как конечные десятичные дроби, так и бесконечные периодические десятичные дроби.

Теперь обо всем по порядку.

Перевод обыкновенных дробей со знаменателями 10, 100, … в десятичные дроби

Некоторые правильные обыкновенные дроби перед переводом в десятичные дроби нуждаются в «предварительной подготовке». Это касается обыкновенных дробей, количество цифр в числителе которых меньше, чем количество нулей в знаменателе. Например, обыкновенную дробь 2/100 нужно предварительно подготовить к переводу в десятичную дробь, а дробь 9/10 в подготовке не нуждается.

«Предварительная подготовка» правильных обыкновенных дробей к переводу в десятичные дроби заключается в дописывании слева в числителе такого количества нулей, чтобы там общее количество цифр стало равно количеству нулей в знаменателе. Например, дробь после дописывания нулей будет иметь вид .

После подготовки правильной обыкновенной дроби можно приступать к ее обращению в десятичную дробь.

Дадим правило перевода правильной обыкновенной дроби со знаменателем 10, или 100, или 1 000, … в десятичную дробь. Оно состоит из трех шагов:

Рассмотрим применение этого правила при решении примеров.

Пример.

Переведите правильную обыкновенную дробь 37/100 в десятичную.

Решение.

В знаменателе находится число 100, в записи которого два нуля. В числителе находится число 37, в его записи две цифры, следовательно, эта дробь не нуждается в подготовке к переводу в десятичную дробь.

Теперь записываем 0, ставим десятичную запятую, и записываем число 37 из числителя, при этом получаем десятичную дробь 0,37.

Ответ:

0,37.

Для закрепления навыков перевода правильных обыкновенных дробей с числителями 10, 100, … в десятичные дроби разберем решение еще одного примера.

Пример.

Запишите правильную дробь 107/10 000 000 в виде десятичной дроби.

Решение.

Количество цифр в числителе равно 3, а количество нулей в знаменателе равно 7, поэтому данная обыкновенная дробь нуждается в подготовке к переводу в десятичную. Нам нужно дописать 7-3=4 нуля слева в числителе, чтобы общее количество цифр там стало равно количеству нулей в знаменателе. Получаем .

Осталось составить нужную десятичную дробь. Для этого, во-первых, записываем 0, во-вторых, ставим запятую, в-третьих, записываем число из числителя вместе с нулями 0000107, в итоге имеем десятичную дробь 0,0000107.

Ответ:

0,0000107.

Неправильные обыкновенные дроби не нуждаются в подготовке при переводе в десятичные дроби. Следует придерживаться следующего правила перевода неправильных обыкновенных дробей со знаменателями 10, 100, … в десятичные дроби:

Разберем применение этого правила при решении примера.

Пример.

Переведите неправильную обыкновенную дробь 56 888 038 009/100 000 в десятичную дробь.

Решение.

Во-первых, записываем число из числителя 56888038009, во-вторых, отделяем десятичной запятой 5 цифр справа, так как в знаменателе исходной дроби 5 нулей. В итоге имеем десятичную дробь 568 880,38009.

Ответ:

568 880,38009.

Для обращения в десятичную дробь смешанного числа, знаменателем дробной части которого является число 10, или 100, или 1 000, …, можно выполнить перевод смешанного числа в неправильную обыкновенную дробь, после чего полученную дробь обратить в десятичную дробь. Но можно пользоваться и следующим правилом перевода смешанных чисел со знаменателем дробной части 10, или 100, или 1 000, … в десятичные дроби:

Рассмотрим пример, при решении которого выполним все необходимые шаги для представления смешанного числа в виде десятичной дроби.

Пример.

Переведите смешанное число в десятичную дробь.

Решение.

В знаменателе дробной части 4 нуля, в числителе же находится число 17, состоящее из 2 цифр, поэтому, нам нужно дописать два нуля слева в числителе, чтобы там число знаков стало равно числу нулей в знаменателе. Выполнив это, в числителе окажется 0017.

Теперь записываем целую часть исходного числа, то есть, число 23, ставим десятичную запятую, после которой записываем число из числителя вместе с дописанными нулями, то есть, 0017, при этом получаем искомую десятичную дробь 23,0017.

Запишем все решение кратко: .

Несомненно, можно было сначала представить смешанное число в виде неправильной дроби, после чего перевести ее в десятичную дробь. При таком подходе решение выглядит так: .

Ответ:

23,0017.

Перевод обыкновенных дробей в конечные и бесконечные периодические десятичные дроби

В десятичную дробь можно перевести не только обыкновенные дроби со знаменателями 10, 100, …, но обыкновенные дроби с другими знаменателями. Сейчас мы разберемся, как это делается.

В некоторых случаях исходная обыкновенная дробь легко приводится к одному из знаменателей 10, или 100, или 1 000, … (смотрите приведение обыкновенной дроби к новому знаменателю), после чего не составляет труда полученную дробь представить в виде десятичной дроби. Например, очевидно, что дробь 2/5 можно привести к дроби со знаменателем 10, для этого нужно числитель и знаменатель умножить на 2, что даст дробь 4/10, которая по правилам, разобранным в предыдущем пункте, легко переводится в десятичную дробь 0,4.

В остальных случаях приходится использовать другой способ перевода обыкновенной дроби в десятичную, к рассмотрению которого мы и переходим.

Для обращения обыкновенной дроби в десятичную дробь выполняется деление числителя дроби на знаменатель, числитель предварительно заменяется равной ему десятичной дробью с любым количеством нулей после десятичной запятой (об этом мы говорили в разделе равные и неравные десятичные дроби). При этом деление выполняется так же, как деление столбиком натуральных чисел, а в частном ставится десятичная запятая, когда заканчивается деление целой части делимого. Все это станет понятно из решений примеров, приведенных ниже примеров.

Пример.

Переведите обыкновенную дробь 621/4 в десятичную дробь.

Решение.

Число в числителе 621 представим в виде десятичной дроби, добавив десятичную запятую и несколько нулей после нее. Для начала допишем 2 цифры 0, позже, при необходимости, мы всегда можем добавить еще нулей. Итак, имеем 621,00.

Теперь выполним деление столбиком числа 621,000 на 4. Первые три шага ничем не отличаются от деления столбиком натуральных чисел, после них приходим к следующей картине:

Так мы добрались до десятичной запятой в делимом, а остаток при этом отличен от нуля. В этом случае в частном ставим десятичную запятую, и продолжаем деление столбиком, не обращая внимания на запятые:

На этом деление закончено, а в результате мы получили десятичную дробь 155,25, которая соответствует исходной обыкновенной дроби.

Ответ:

155,25.

Для закрепления материала рассмотрим решение еще одного примера.

Пример.

Переведите обыкновенную дробь 21/800 в десятичную дробь.

Решение.

Для перевода данной обыкновенной дроби в десятичную, выполним деление столбиком десятичной дроби 21,000… на 800. Нам после первого же шага придется поставить десятичную запятую в частном, после чего продолжить деление:

Наконец-то мы получили остаток 0, на этом перевод обыкновенной дроби 21/400 в десятичную дробь закончен, и мы пришли к десятичной дроби 0,02625.

Ответ:

0,02625.

Может случиться, что при делении числителя на знаменатель обыкновенной дроби мы так и не получим в остатке 0. В этих случаях деление можно продолжать сколь угодно долго. Однако, начиная с некоторого шага, остатки начитают периодически повторяться, при этом повторяются и цифры в частном. Это означает, что исходная обыкновенная дробь переводится в бесконечную периодическую десятичную дробь. Покажем это на примере.

Пример.

Запишите обыкновенную дробь 19/44 в виде десятичной дроби.

Решение.

Для перевода обыкновенной дроби в десятичную выполним деление столбиком:

Уже сейчас видно, что при делении начали повторяться остатки 8 и 36, при этом в частном повторяются цифры 1 и 8. Таким образом, исходная обыкновенная дробь 19/44 переводится в периодическую десятичную дробь 0,43181818…=0,43(18).

Ответ:

0,43(18).

В заключение этого пункта разберемся, какие обыкновенные дроби можно перевести в конечные десятичные дроби, а какие – только в периодические.

Пусть перед нами находится несократимая обыкновенная дробь (если дробь сократимая, то предварительно выполняем сокращение дроби), и нам нужно выяснить, в какую десятичную дробь ее можно перевести – в конечную или периодическую.

Понятно, что если обыкновенную дробь можно привести к одному из знаменателей 10, 100, 1 000, …, то полученную дробь легко перевести в конечную десятичную дробь по правилам, разобранным в предыдущем пункте. Но к знаменателям 10, 100, 1 000 и т.д. приводятся далеко не все обыкновенные дроби. К таким знаменателям можно привести лишь дроби, знаменатели которых являются делителями хотя бы одного из чисел 10, 100, … А какие числа могут быть делителями 10, 100, …? Ответить на этот вопрос нам позволят разложения на простые множители чисел 10, 100, …, а они таковы: 10=2·5, 100=2·2·5·5, 1 000=2·2·2·5·5·5, …. Отсюда следует, что делителями 10, 100, 1 000 и т.д. могут быть лишь числа, разложения которых на простые множители содержат лишь числа 2 и (или) 5.

Теперь мы можем сделать общий вывод о переводе обыкновенных дробей в десятичные дроби:

Пример.

Не выполняя перевод обыкновенных дробей в десятичные, скажите, какие из дробей 47/20, 7/12, 21/56, 31/17 можно перевести в конечную десятичную дробь, а какие - только в периодическую.

Решение.

Разложение на простые множители знаменателя дроби 47/20 имеет вид 20=2·2·5. В этом разложении присутствуют лишь двойки и пятерки, поэтому эта дробь может быть приведена к одному из знаменателей 10, 100, 1 000, … (в этом примере к знаменателю 100), следовательно, может быть переведена в конечную десятичную дробь.

Разложение на простые множители знаменателя дроби 7/12 имеет вид 12=2·2·3. Так как оно содержит простой множитель 3, отличный от 2 и 5, то эта дробь не может быть представлена в виде конечной десятичной дроби, но может быть переведена в периодическую десятичную дробь.

Дробь 21/56 – сократимая, после сокращения она принимает вид 3/8. Разложение знаменателя на простые множители содержит три множителя, равных 2, следовательно, обыкновенная дробь 3/8, а значит и равная ей дробь 21/56, может быть переведена в конечную десятичную дробь.

Наконец, разложение знаменателя дроби 31/17 представляет собой само простое число 17, следовательно, эту дробь нельзя обратить в конечную десятичную дробь, но можно обратить в бесконечную периодическую.

Ответ:

47/20 и 21/56 можно перевести в конечную десятичную дробь, а 7/12 и 31/17 - только в периодическую.

Обыкновенные дроби не переводятся в бесконечные непериодические десятичные дроби

Информация предыдущего пункта порождает вопрос: «Может ли при делении числителя дроби на знаменатель получиться бесконечная непериодическая дробь»?

Ответ: нет. При переводе обыкновенной дроби может получиться либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь. Поясним, почему это так.

Из теоремы о делимости с остатком ясно, что остаток всегда меньше делителя, то есть, если мы выполняем деление некоторого целого числа на целое число q, то остатком может быть лишь одно из чисел 0, 1, 2, …, q−1. Отсюда следует, что после завершения деления столбиком целой части числителя обыкновенной дроби на знаменатель q, не более чем через q шагов возникнет одна из двух следующих ситуаций:

Других вариантов быть не может, следовательно, при обращении обыкновенной дроби в десятичную дробь не может получиться бесконечная непериодическая десятичная дробь.

Из приведенных в этом пункте рассуждений также следует, что длина периода десятичной дроби всегда меньше, чем значение знаменателя соответствующей обыкновенной дроби.

Перевод десятичных дробей в обыкновенные дроби


Теперь разберемся, как перевести десятичную дробь в обыкновенную. Начнем с перевода конечных десятичных дробей в обыкновенные дроби. После этого рассмотрим метод обращения бесконечных периодических десятичных дробей. В заключение скажем о невозможности перевода бесконечных непериодических десятичных дробей в обыкновенные дроби.

Перевод конечных десятичных дробей в обыкновенные дроби

Получить обыкновенную дробь, которая записана в виде конечной десятичной дроби, достаточно просто. Правило перевода конечной десятичной дроби в обыкновенную дробь состоит из трех шагов:

Рассмотрим решения примеров.

Пример.

Обратите десятичную дробь 3,025 в обыкновенную дробь.

Решение.

Если в исходной десятичной дроби убрать десятичную запятую, то мы получим число 3 025. В нем нет нулей слева, которые бы мы отбросили. Итак, в числитель искомой дроби записываем 3 025.

В знаменатель записываем цифру 1 и справа к ней дописываем 3 нуля, так как в исходной десятичной дроби после запятой находятся 3 цифры.

Так мы получили обыкновенную дробь 3 025/1 000. Эту дробь можно сократить на 25, получаем .

Ответ:

.

Пример.

Выполните перевод десятичной дроби 0,0017 в обыкновенную дробь.

Решение.

Без десятичной запятой исходная десятичная дробь имеет вид 00017, отбросив нули слева получаем число 17, которое и является числителем искомой обыкновенной дроби.

В знаменатель записываем единицу с четырьмя нулями, так как в исходной десятичной дроби после запятой 4 цифры.

В итоге имеем обыкновенную дробь 17/10 000. Эта дробь несократима, и перевод десятичной дроби в обыкновенную закончен.

Ответ:

.

Когда целая часть исходной конечной десятичной дроби отлична от нуля, то ее можно сразу перевести в смешанное число, минуя обыкновенную дробь. Дадим правило перевода конечной десятичной дроби в смешанное число:

Рассмотрим пример перевода десятичной дроби в смешанное число.

Пример.

Представьте десятичную дробь 152,06005 в виде смешанного числа

Решение.

Число 152 до десятичной запятой есть целая часть искомого смешанного числа.

После десятичной запятой находится 06005, после отбрасывания нуля слева получаем число 6 005 – это числитель дробной части.

А в знаменателе дробной части запишем 1 и допишем 5 нулей, так как после десятичной запятой находятся 6 цифр, то есть, в знаменателе будет 100 000.

Так мы получили смешанное число . Дробную часть этого числа можно сократить на 5, после этого имеем .

На этом перевод конечной десятичной дроби 152,06005 в смешанное число закончен.

Ответ:

.

Перевод периодических дробей в обыкновенные дроби

Любую периодическую десятичную дробь можно перевести в обыкновенную дробь. На примерах разберем способ, позволяющий осуществить такой переход.

Начнем с самых простых случаев, когда период дроби есть 0. Периодические дроби с периодом 0 можно заменить равными им конечными десятичными дробями, для этого достаточно отбросить все нули справа. Таким образом, перевод в обыкновенные дроби периодических дробей с периодом 0 сводится к обращению конечных десятичных дробей.

Пример.

Запишите периодическую дробь 3,75(0) в виде обыкновенной дроби.

Решение.

Отбрасывание справа нулей переводит бесконечную периодическую десятичную дробь 3,75(0) в равную ей конечную десятичную дробь 3,75. А как осуществляется обращение конечных десятичных дробей в обыкновенные дроби, мы разобрали в предыдущем пункте: . Таким образом, 3,75(0)=15/4.

Ответ:

3,75(0)=15/4.

Переходим к переводу бесконечных периодических десятичных дробей с отличным от 0 периодом в обыкновенные дроби. В основе такого перевода лежит тот факт, что периодическую часть периодической десятичной дроби можно рассматривать как сумму членов бесконечно убывающей геометрической прогрессии. Например, 0,(73)=0,73+0,0073+0,000073+… или 4,07(254)=4,07+(0,00254+0,00000254+0,00000000254+…).

Напомним, что сумма членов бесконечно убывающей геометрической прогрессии с первым членом b и знаменателем q (0<q<1) равна .

Теперь можно рассмотреть решения нескольких примеров.

Пример.

Переведите периодическую дробь 0,(8) в обыкновенную дробь.

Решение.

Достаточно очевидно, что 0,(8)=0,8+0,08+0,008+…. Мы пришли к сумме членов бесконечно убывающей геометрической прогрессии с первым членом 0,8 и знаменателем 0,1. Применив формулу суммы, получаем . Осталось выполнить нужные действия с десятичными дробями: .

Таким образом, бесконечная периодическая десятичная дробь 0,(8) обращается в обыкновенную дробь 8/9.

Ответ:

0,(8)=8/9.

Для закрепления материала разберем решение еще одного примера.

Пример.

Представьте бесконечную десятичную периодическую дробь 0,43(18) в обыкновенную дробь.

Решение.

Запишем исходную периодическую дробь в виде следующей суммы: 0,43(18)=0,43+(0,0018+0,000018+0,00000018+…).

Конечная десятичная дробь 0,43 переводится в обыкновенную дробь 43/100, а в скобках находится сумма членов бесконечно убывающей геометрической прогрессии с первым членом 0,0018 и знаменателем 0,01, она равна . Следовательно, 0,43(18)=0,43+(0,0018+0,000018+0,00000018+…)=43/100+18/9900.

После сложения дробей с разными знаменателями и сокращения полученной дроби, приходим к обыкновенной дроби 19/44. На этом перевод периодической дроби в обыкновенную дробь завершен.

Ответ:

0,43(18)=19/44.

Бесконечные непериодические десятичные дроби не переводятся в обыкновенные дроби

Выше мы выяснили, что любая обыкновенная дробь переводится либо в конечную десятичную дробь, либо в периодическую десятичную дробь. Отсюда следует, что никакая бесконечная непериодическая десятичная дробь не может быть переведена в обыкновенную дробь, так как полученную обыкновенную дробь нельзя будет перевести обратно в эту бесконечную непериодическую дробь.

Список литературы.

  • Математика: учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс : учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.