Основное свойство дроби, формулировка, доказательство, примеры применения.
Подробно разобрано основное свойство дроби, дана его формулировка, приведено доказательство и поясняющий пример. Также рассмотрено применение основного свойства дроби при сокращении дробей и приведении дробей к новому знаменателю.
Основное свойство дроби – формулировка, доказательство и поясняющие примеры
Все обыкновенные дроби обладают одним очень важным свойством, которое называют основным свойством дроби. Сформулируем основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.
Запишем основное свойство дроби в буквенном виде: для натуральных чисел a, b и m справедливы равенства и
.
Приведем доказательство основного свойства дроби. Равенства (a·m)·b=(b·m)·a и (a:m)·b=(b:m)·a справедливы в силу свойств умножения натуральных чисел и свойств деления натуральных чисел, тогда дроби и
, а также
и
равны по определению (смотрите равные и неравные дроби).
Давайте рассмотрим пример, иллюстрирующий основное свойство дроби. Пусть у нас есть квадрат, разделенный на 9 «больших» квадратов, а каждый из этих «больших» квадратов разделен на 4 «маленьких» квадрата. Таким образом, можно также говорить, что исходный квадрат разделен на 4·9=36 «маленьких» квадратов. Закрасим 5 «больших» квадратов. При этом закрашенными окажутся 4·5=20 «маленьких» квадратов. Приведем рисунок, отвечающий нашему примеру.

Закрашенная часть составляет 5/9 исходного квадрата, или, что то же самое, 20/36 исходного квадрата, то есть, дроби 5/9 и 20/36 равны: или
. Из этих равенств, а также из равенств 20=5·4, 36=9·4, 20:4=5 и 36:4=9 следует, что
и
.
Для закрепления разобранного материала рассмотрим решение примера.
Пример.
Числитель и знаменатель некоторой обыкновенной дроби умножили на 62, после чего числитель и знаменатель полученной дроби разделили на 2. Равна ли полученная дробь исходной?
Решение.
Умножение числителя и знаменателя дроби на любое натуральное число, в частности на 62, дает дробь, которая в силу основного свойства дроби, равна исходной. Основное свойство дроби позволяет утверждать и то, что после деления числителя и знаменателя полученной дроби на 2 получится дробь, которая будет равна исходной дроби.
Ответ:
да, полученная дробь равна исходной.
Применение основного свойства дроби
Основное свойство дроби в основном применяется в двух случаях: во-первых, при приведении дробей к новому знаменателю, и, во-вторых, при сокращении дробей.
Приведение дроби к новому знаменателю – это замена исходной дроби равной ей дробью, но с большим числителем и знаменателем. Для приведения дроби к новому знаменателю и числитель, и знаменатель дроби умножается на некоторое натуральное число, при этом, согласно основному свойству дроби, получается дробь, равная исходной, но с другим числителем и знаменателем. Без приведения дробей к новому знаменателю не обойтись при выполнении действий с обыкновенными дробями.
Основное свойство дроби позволяет проводить сокращение дробей, и в результате переходить от исходной дроби к равной ей дроби, но с меньшим числителем и знаменателем. Сокращение дроби заключается в делении числителя и знаменателя исходной дроби на любой отличный от единицы положительный общий делитель числителя и знаменателя (если таких общих делителей нет, то исходная дробь несократима, то есть, не подлежит сокращению). В частности, деление на наибольший общий делитель приведет исходную дробь к несократимому виду.
Список литературы.
- Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
- Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.