Перпендикулярные плоскости, условие перпендикулярности плоскостей.
Эта статья о перпендикулярных плоскостях. Сначала дано определение перпендикулярных плоскостей, показаны обозначения и приведены примеры. После этого сформулирован признак перпендикулярности плоскостей и условие перпендикулярности двух плоскостей. В заключении детально разобраны решения характерных задач.
Перпендикулярные плоскости – основные сведения.
Определение перпендикулярных плоскостей дается через угол между пересекающимися плоскостями.
Определение.
Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен девяноста градусам.
Для обозначения перпендикулярности используют символ вида «». То есть, если плоскости
и
перпендикулярны, то можно кратко записать
.

Если плоскости и
перпендикулярны, то можно также сказать, что плоскость
перпендикулярна к плоскости
или плоскость
перпендикулярна к плоскости
. Поэтому перпендикулярные плоскости
и
часто называют взаимно перпендикулярными.
В качестве примера перпендикулярных плоскостей можно привести плоскости стены и пола в комнате.
Перпендикулярность плоскостей – признак и условие перпендикулярности.
На практике часто приходится определять, перпендикулярны ли две заданные плоскости. Для этого можно найти угол между заданными плоскостями, и если он будет равен , то по определению плоскости будут перпендикулярными.
Также существует признак перпендикулярности двух плоскостей, который часто используется для доказательства перпендикулярности двух плоскостей. В его формулировке участвуют перпендикулярные прямая и плоскость. Сформулируем признак перпендикулярности двух плоскостей в виде теоремы.
Теорема.
Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.
Доказательство признака перпендикулярности двух плоскостей Вы можете посмотреть в учебнике по геометрии за 10-11 классы.
Из этого признака напрямую следует, что если плоскость перпендикулярна к линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.
Теперь рассмотрим необходимое и достаточное условие перпендикулярности двух плоскостей, которое удобно применять для проверки перпендикулярности плоскостей, заданных в прямоугольной системе координат в трехмерном пространстве. Определение нормального вектора плоскости позволяет доказать следующее необходимое и достаточное условие перпендикулярности двух плоскостей.
Теорема.
Для перпендикулярности двух пересекающихся плоскостей необходимо и достаточно, чтобы нормальные векторы этих плоскостей были перпендикулярны.
Пусть в трехмерном пространстве зафиксирована прямоугольная система координат. Если и
- нормальные векторы плоскостей
и
соответственно, то необходимое и достаточное условие перпендикулярности векторов
и
имеет вид
. Таким образом, если
и
- нормальные векторы плоскостей
и
соответственно, то для перпендикулярности плоскостей
и
необходимо и достаточно, чтобы скалярное произведение векторов
и
равнялось нулю, то есть, чтобы выполнялось равенство
.
Разберем решения нескольких примеров.
Пример.
Перпендикулярны ли плоскости, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и
?
Решение.
Чтобы ответить на вопрос о перпендикулярности заданных плоскостей, найдем координаты нормальных векторов этих плоскостей и проверим выполнение условия перпендикулярности этих векторв.
Общее уравнение плоскости позволяет сразу записать координаты нормального вектора:
.
Чтобы определить координаты нормального вектора плоскости , перейдем от уравнения плоскости в отрезках к общему уравнению плоскости:
. Таким образом,
- нормальный вектор плоскости
.
Вычислим скалярное произведение векторов и
:
. Так как оно отлично от нуля, то векторы
и
не перпендикулярны, следовательно, заданные плоскости не перпендикулярны.
Ответ:
нет, плоскости не перпендикулярны.
Пример.
В прямоугольной системе координат Oxyz в трехмерном пространстве заданы координаты четырех точек . Проверьте перпендикулярность плоскостей АВС и ABD.
Решение.
Убедимся, что скалярное произведение нормальных векторов указанных плоскостей равно нулю – это будет доказательством перпендикулярности плоскостей. Для этого сначала нам нужно найти координаты нормальных векторов и
плоскостей АВС и ABD соответственно.
По известным координатам точек А, В, С и D мы можем вычислить координаты векторов ,
и
(при необходимости смотрите статью вычисление координат вектора по координатам точек его конца и начала):
.
Нормальным вектором плоскости АВС является векторное произведение векторов и
, а нормальным вектором плоскости ABD является векторное произведение векторов
и
, то есть,
Находим скалярное произведение векторов и
:
. Оно равно нулю, что указывает на перпендикулярность нормальных векторов плоскостей АВС и ABD. Значит, плоскости АВС и ABD также перпендикулярны.
Заметим, что можно было по координатам заданных точек получить общие уравнения плоскостей АВС и ABD (смотрите статью уравнение плоскости, проходящей через три заданные точки), из них найти координаты нормальных векторов этих плоскостей, после чего проверить выполнение условия перпендикулярности нормальных векторов плоскостей.
Список литературы.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
- Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
- Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
- Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
Некогда разбираться?