Прямая, плоскость, их уравнения

Нормальный вектор плоскости, координаты нормального вектора плоскости.


Хорошее представление о прямой линии начинается с момента, когда вместе с ее образом одновременно возникают образы ее направляющих и нормальных векторов. Аналогично, при упоминании о плоскости в пространстве, она должна представляться вместе со своим нормальным вектором. Почему так? Да потому что во многих случаях удобнее использовать нормальный вектор плоскости, чем саму плоскость.

В этой статье мы сначала дадим определение нормального вектора плоскости, приведем примеры нормальных векторов и необходимые графические иллюстрации. Далее поместим плоскость в прямоугольную систему координат в трехмерном пространстве и научимся определять координаты нормального вектора плоскости по ее уравнению.


Нормальный вектор плоскости – определение, примеры, иллюстрации.

Для хорошего усвоения материала нам потребуется хорошее представление о прямой в пространстве, представление о плоскости и определения из статьи векторы – основные определения.

Дадим определение нормального вектора плоскости.

Определение.

Нормальный вектор плоскости - это любой ненулевой вектор, лежащий на прямой перпендикулярной к данной плоскости.

Из определения следует, что существует бесконечное множество нормальных векторов данной плоскости.

изображение

Так как все нормальные векторы заданной плоскости лежат на параллельных прямых, то все нормальные векторы плоскости коллинеарны. Другими словами, если формула - нормальный вектор плоскости формула, то вектор формула при некотором ненулевом действительном значении t также является нормальным вектором плоскости формула (смотрите статью условие коллинеарности векторов).

Также следует заметить, что любой нормальный вектор плоскости можно рассматривать как направляющий вектор прямой, перпендикулярной к этой плоскости.

Множества нормальных векторов параллельных плоскостей совпадают, так как прямая, перпендикулярная к одной из параллельных плоскостей, перпендикулярна и ко второй плоскости.

Из определения перпендикулярных плоскостей и определения нормального вектора плоскости следует, что нормальные векторы перпендикулярных плоскостей перпендикулярны.

Приведем пример нормального вектора плоскости.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz. Координатные векторы формула являются нормальными векторами плоскостей Oyz, Oxz и Oxy соответственно. Это действительно так, потому что векторы формула ненулевые и лежат на координатных прямых Ox, Oy и Oz соответственно, которые перпендикулярны координатным плоскостям Oyz, Oxz и Oxy соответственно.

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.


Озвучим цель, которая преследовалась при создании этого пункта статьи: научиться находить координаты нормального вектора плоскости, если известно уравнение плоскости в прямоугольной системе координат Oxyz.

Общее уравнение плоскости вида формула определяет в прямоугольной системе координат Oxyz плоскость, нормальным вектором которой является вектор формула. Таким образом, чтобы найти координаты нормального вектора плоскости нам достаточно иметь перед глазами общее уравнение этой плоскости.

Рассмотрим несколько примеров.

Пример.

Найдите координаты какого-либо нормального вектора плоскости формула.

Решение.

Нам дано общее уравнение плоскости, коэффициенты перед переменными x, y и z представляют собой соответствующие координаты нормального вектора этой плоскости. Следовательно, формула - один из нормальных векторов заданной плоскости. Множество всех нормальных векторов этой плоскости можно задать как формула, где t - произвольное действительное число, отличное от нуля.

Ответ:

формула

Пример.

Плоскость задана уравнением формула. Определите координаты ее направляющих векторов.

Решение.

Нам дано неполное уравнение плоскости. Чтобы стали видны координаты ее направляющего вектора, перепишем уравнение формула в виде формула. Таким образом, нормальный вектор этой плоскости имеет координаты формула, а множество всех нормальных векторов запишется как формула.

Ответ:

формула

Уравнение плоскости в отрезках вида формула, как и общее уравнение плоскости, позволяет сразу записать один из нормальных векторов этой плоскости – он имеет координаты формула.

В заключении скажем, что с помощью нормального вектора плоскости могут быть решены различные задачи. Самыми распространенными являются задачи на доказательство параллельности или перпендикулярности плоскостей, задачи на составление уравнения плоскости, а также задачи на нахождение угла между плоскостями и на нахождение угла между прямой и плоскостью.



Некогда разбираться?

Закажите решение

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Профиль автора статьи в Google+