Уравнение прямой, виды уравнения прямой на плоскости.
Эта статья является продолжением раздела прямая на плоскости. Здесь мы перейдем к алгебраическому описанию прямой линии с помощью уравнения прямой.
Материал данной статьи является ответом на вопросы: «Какое уравнение называют уравнением прямой и какой вид имеет уравнение прямой на плоскости»?
Уравнение прямой на плоскости - определение.
Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и в ней задана прямая линия.
Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.
Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y, которое обращается в тождество при подстановке в него координат любой точки этой прямой.
Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости. Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.
Общее уравнение прямой.
Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.
Теорема.
Всякое уравнение первой степени с двумя переменными x и y вида , где А, В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида
.
Уравнение называется общим уравнением прямой на плоскости.
Поясним смысл теоремы.
Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида
.
Посмотрите на чертеж.

С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением
, дают нам прямую линию, приведенную на чертеже.
Общее уравнение прямой называется полным, если все числа А, В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным. Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение
задает прямую, параллельную оси абсцисс Ox, а при В=0 – параллельную оси ординат Oy.
Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А, В и С.
Нормальный вектор прямой, заданной общим уравнением прямой вида , имеет координаты
.
Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.
Рекомендуем к дальнейшему изучению статью общее уравнение прямой. Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.
Уравнение прямой в отрезках.
Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках. Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами
и
, и с помощью линейки соединить их прямой линией.
Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки
и соединяем их.

Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье уравнение прямой в отрезках.
Уравнение прямой с угловым коэффициентом.
Уравнение прямой вида , где x и y - переменные, а k и b – некоторые действительные числа, называется уравнением прямой с угловым коэффициентом (k – угловой коэффициент). Уравнения прямой с угловым коэффициентом нам хорошо известны из курса алгебры средней школы. Такой вид уравнения прямой очень удобен для исследования, так как переменная y представляет собой явную функцию аргумента x.
Определение углового коэффициента прямой дается через определение угла наклона прямой к положительному направлению оси Ox.
Определение.
Углом наклона прямой к положительному направлению оси абсцисс в данной прямоугольной декартовой системе координат Oxy называют угол , отсчитываемый от положительного направления оси Ох до данной прямой против хода часовой стрелки.
Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю.
Определение.
Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .
Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует). Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.
Заметим, что прямая, определяемая уравнением , проходит через точку
на оси ординат.
Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку
и образующую угол
с положительным направлением оси абсцисс, причем
.
В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку
и имеет наклон
радиан (60 градусов) к положительному направлению оси Ox. Ее угловой коэффициент равен
.

Отметим, что уравнение касательной к графику функции в точке очень удобно искать именно в виде уравнения прямой с угловым коэффициентом.
Рекомендуем продолжить изучение этой темы в разделе уравнение прямой с угловым коэффициентом. Там представлена более подробная информация, приведены графические иллюстрации, детально разобраны решения характерных примеров и задач.
Каноническое уравнение прямой на плоскости.
Каноническое уравнение прямой на плоскости в прямоугольной декартовой системе координат Oxy имеет вид , где
и
– некоторые действительные числа, причем
и
одновременно не равны нулю.
Очевидно, что прямая линия, определяемая каноническим уравнением прямой, проходит через точку . В свою очередь числа
и
, стоящие в знаменателях дробей, представляют собой координаты направляющего вектора этой прямой. Таким образом, каноническое уравнение прямой
в прямоугольной системе координат Oxy на плоскости соответствует прямой, проходящей через точку
и имеющей направляющий вектор
.
Для примера изобразим на плоскости прямую линию, соответствующую каноническому уравнению прямой вида . Очевидно, что точка
принадлежит прямой, а вектор
является направляющим вектором этой прямой.

Каноническое уравнение прямой вида используют даже тогда, когда одно из чисел
или
равно нулю. В этом случае запись
считают условной (так как содержится ноль в знаменателе) и ее следует понимать как
. Если
, то каноническое уравнение принимает вид
и определяет прямую, параллельную оси ординат (или совпадающую с ней). Если
, то каноническое уравнение прямой принимает вид
и определяет прямую, параллельную оси абсцисс (или совпадающую с ней).
Детальная информация об уравнении прямой в каноническом виде, а также подробные решения характерных примеров и задач собраны в статье каноническое уравнение прямой на плоскости.
Параметрические уравнения прямой на плоскости.
Параметрические уравнения прямой на плоскости имеют вид , где
и
– некоторые действительные числа, причем
и
одновременно не равны нулю, а
- параметр, принимающий любые действительные значения.
Параметрические уравнения прямой устанавливают неявную зависимость между абсциссами и ординатами точек прямой линии с помощью параметра (отсюда и название этого вида уравнений прямой).
Пара чисел , которые вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра
, представляет собой координаты некоторой точки прямой. К примеру, при
имеем
, то есть, точка с координатами
лежит на прямой.
Следует отметить, что коэффициенты и
при параметре
в параметрических уравнениях прямой являются координатами направляющего вектора этой прямой.
Для примера приведем параметрические уравнения прямой вида . Эта прямая в прямоугольной системе координат Oxy на плоскости проходит через точку с координатами
и имеет направляющий вектор
.
В статье параметрические уравнения прямой на плоскости Вы можете ознакомиться с подробным решением примеров и задач по этой теме.
Нормальное уравнение прямой.
Если в общем уравнении прямой вида числа А, В и С таковы, что длина вектора
равна единице, а
, то это общее уравнение прямой называется нормальным уравнением прямой. Нормальное уравнение прямой определяет в прямоугольной системе координат Oxy прямую линию, нормальным вектором которой является вектор
, причем эта прямая проходит на расстоянии
от начала координат в направлении вектора
.
Часто можно видеть другую форму записи нормального уравнения прямой: , где
и
- действительные числа, представляющие собой направляющие косинусы нормального вектора прямой единичной длины (то есть,
и справедливо равенство
), а величина p (
) равна расстоянию от начала координат до прямой.
Для примера приведем общее уравнение прямой . Это общее уравнение прямой является нормальным уравнением прямой, так как
и
. Оно в прямоугольной системе координат Oxy на плоскости задает прямую линию, нормальный вектор которой имеет координаты
, и эта прямая удаленна от начала координат на 3 единицы в направлении нормального вектора
.

Отметим, что уравнение прямой в нормальном виде позволяет находить расстояние от точки до прямой на плоскости.
Если в общем уравнении прямой числа А, В и С таковы, что уравнение
не является нормальным уравнением прямой, то его можно привести к нормальному виду. Об этом читайте в статье нормальное уравнение прямой.
Список литературы.
- Мордкович А.Г. Алгебра. 7 класс. Часть 1: учебник для учащихся общеобразовательных учреждений.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
- Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
- Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
Некогда разбираться?