Прямая, плоскость, их уравнения

Угол между скрещивающимися прямыми – определение, примеры нахождения.


В этой статье сначала дадим определение угла между скрещивающимися прямыми и приведем графическую иллюстрацию. Далее ответим на вопрос: «Как найти угол между скрещивающимися прямыми, если известны координаты направляющих векторов этих прямых в прямоугольной системе координат»? В заключении попрактикуемся в нахождении угла между скрещивающимися прямыми при решении примеров и задач.


Угол между скрещивающимися прямыми - определение.

К определению угла между скрещивающимися прямыми будем подходить постепенно.

Сначала напомним определение скрещивающихся прямых: две прямые в трехмерном пространстве называются скрещивающимися, если они не лежат в одной плоскости. Из этого определения следует, что скрещивающиеся прямые не пересекаются, не параллельны, и, тем более, не совпадают, иначе они обе лежали бы в некоторой плоскости.

изображение

Приведем еще вспомогательные рассуждения.

Пусть в трехмерном пространстве заданы две скрещивающиеся прямые a и b. Построим прямые a1 и b1 так, чтобы они были параллельны скрещивающимся прямым a и b соответственно и проходили через некоторую точку пространства M1. Таким образом, мы получим две пересекающиеся прямые a1 и b1. Пусть угол между пересекающимися прямыми a1 и b1 равен углу формула. Теперь построим прямые a2 и b2, параллельные скрещивающимся прямым a и b соответственно, проходящие через точку М2, отличную от точки М1. Угол между пересекающимися прямыми a2 и b2 также будет равен углу формула. Это утверждение справедливо, так как прямые a1 и b1 совпадут с прямыми a2 и b2 соответственно, если выполнить параллельный перенос, при котором точка М1 перейдет в точку М2. Таким образом, мера угла между двумя пересекающимися в точке М прямыми, соответственно параллельными заданным скрещивающимся прямым, не зависит от выбора точки М.

Теперь мы готовы к тому, чтобы дать определение угла между скрещивающимися прямыми.

Определение.

Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Из определения следует, что угол между скрещивающимися прямыми также не будет зависеть от выбора точки M. Поэтому в качестве точки М можно взять любую точку, принадлежащую одной из скрещивающихся прямых.

Приведем иллюстрацию определения угла между скрещивающимися прямыми.

изображение

Нахождение угла между скрещивающимися прямыми.


Так как угол между скрещивающимися прямыми определяется через угол между пересекающимися прямым, то нахождение угла между скрещивающимися прямыми сводится к нахождению угла между соответствующими пересекающимися прямыми в трехмерном пространстве.

Несомненно, для нахождения угла между скрещивающимися прямыми подходят методы, изучаемые на уроках геометрии в средней школе. То есть, выполнив необходимые построения, можно связать искомый угол с каким-либо известным из условия углом, основываясь на равенстве или подобии фигур, в некоторых случаях поможет теорема косинусов, а иногда к результату приводит определение синуса, косинуса и тангенса угла прямоугольного треугольника.

Однако очень удобно решать задачу нахождения угла между скрещивающимися прямыми методом координат. Именно его и рассмотрим.

Пусть в трехмерном пространстве введена прямоугольная система координат Oxyz (правда, во многих задачах ее приходится вводить самостоятельно).

Поставим перед собой задачу: найти угол формула между скрещивающимися прямыми a и b, которым соответствуют в прямоугольной системе координат Oxyz некоторые уравнения прямой в пространстве.

Решим ее.

Возьмем произвольную точку трехмерного пространства М и будем считать, что через нее проходят прямые a1 и b1, параллельные скрещивающимся прямым a и b соответственно. Тогда искомый угол формула между скрещивающимися прямыми a и b равен углу между пересекающимися прямыми a1 и b1 по определению.

Таким образом, нам осталось найти угол между пересекающимися прямыми a1 и b1. Чтобы применить формулу для нахождения угла между двумя пересекающимися прямыми в пространстве нам нужно знать координаты направляющих векторов прямых a1 и b1.

Как же мы их можем получить? А очень просто. Определение направляющего вектора прямой позволяет утверждать, что множества направляющих векторов параллельных прямых совпадают. Следовательно, в качестве направляющих векторов прямых a1 и b1 можно принять направляющие векторы формула и формула прямых a и b соответственно.

Координаты векторов формула и формула определяются либо по известным из условия уравнениям прямых a и b (смотрите раздел координаты направляющего вектора прямой), либо по известным из условия координатам двух точек прямых a и b (здесь может быть полезна теория раздела координаты вектора через координаты точек его начала и конца).

Итак, угол между двумя скрещивающимися прямыми a и b вычисляется по формуле формула, где формула и формула - направляющие векторы прямых a и b соответственно.

Формула для нахождения косинуса угла между скрещивающимися прямыми a и b имеет вид формула.

Основное тригонометрическое тождество позволяет найти синус угла между скрещивающимися прямыми, если известен косинус: формула.

Осталось разобрать решения примеров.

Пример.

Найдите угол между скрещивающимися прямыми a и b, которые определены в прямоугольной системе координат Oxyz уравнениями формула и формула.

Решение.

Канонические уравнения прямой в пространстве позволяют сразу определить координаты направляющего вектор этой прямой – их дают числа в знаменателях дробей, то есть, формула - направляющий вектор прямой формула. Параметрические уравнения прямой в пространстве также дают возможность сразу записать координаты направляющего вектора – они равны коэффициентам перед параметром, то есть, формула - направляющий вектор прямой формула. Таким образом, мы располагаем всеми необходимыми данными для применения формулы, по которой вычисляется угол между скрещивающимися прямыми:
формула

Ответ:

угол между заданными скрещивающимися прямыми равен формула.

Пример.

Найдите синус и косинус угла между скрещивающимися прямыми, на которых лежат ребра AD и BC пирамиды АВСD, если известны координаты ее вершин: формула.

Решение.

Направляющими векторами скрещивающихся прямых AD и BC являются векторы формула и формула. Вычислим их координаты как разность соответствующих координат точек конца и начала вектора:
формула

По формуле формула мы можем вычислить косинус угла между указанными скрещивающимися прямыми:
формула

Теперь вычислим синус угла между скрещивающимися прямыми:
формула

Ответ:

формула

В заключении рассмотрим решение задачи, в которой требуется отыскать угол между скрещивающимися прямыми, а прямоугольную систему координат приходится вводить самостоятельно.

Пример.

Дан прямоугольный параллелепипед ABCDA1B1C1D1, у которого АВ=3, АD=2 и AA1=7 единиц. Точка E лежит на ребре АА1 и делит его в отношении 5 к 2 считая от точки А. Найдите угол между скрещивающимися прямыми ВЕ и А1С.

Решение.

Так как ребра прямоугольного параллелепипеда при одной вершине взаимно перпендикулярны, то удобно ввести прямоугольную систему координат, и определить угол между указанными скрещивающимися прямыми методом координат через угол между направляющими векторами этих прямых.

Введем прямоугольную систему координат Oxyz следующим образом: пусть начало координат совпадает с вершиной А, ось Ox совпадает с прямой АD, ось Oy - с прямой АВ, а ось Oz – с прямой АА1.

изображение

Тогда точка В имеет координаты формула, точка Е - формула (при необходимости смотрите статью деление отрезка в данном отношении), точка А1 - формула, а точка С - формула. По координатам этих точек мы можем вычислить координаты векторов формула и формула. Имеем формула, формула.

Осталось применить формулу для нахождения угла между скрещивающимися прямыми по координатам направляющих векторов:
формула

Ответ:

формула



Некогда разбираться?

Закажите решение

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Профиль автора статьи в Google+