Интеграл, методы интегрирования

Интегрирование по частям.


Метод интегрирования по частям позволяет свести исходный неопределенный интеграл к более простому виду либо к табличному интегралу. Этот метод наиболее часто применяется, если подынтегральная функция содержит логарифмические, показательные, обратные тригонометрические, тригонометрические функции, а также их комбинации.


Формула интегрирования по частям следующая формула интегрирования по частям.

То есть, подынтегральное выражение f(x)dx представляем в виде произведения функции u(x) на d(v(x)) - дифференциал функции v(x). Далее находим функцию v(x) (чаще всего методом непосредственного интегрирования) и d(u(x)) - дифференциал функции u(x). Подставляем найденные выражения в формулу интегрирования по частям и исходный неопределенный интеграл сводится к разности формула. Последний неопределенный интеграл может быть взят с использованием любого метода интегрирования, в том числе и метода интегрирования по частям.

В качестве примера найдем множество первообразных функции логарифма.

Пример.

Найти неопределенный интеграл формула

Решение.

Найдем этот неопределенный интеграл методом интегрирования по частям. В качестве функции u(x) возьмем ln(x), а в качестве d(v(x)) оставшуюся часть подынтегрального выражения, то есть dx.

Имеем, формула, где формула.

Дифференциал функции u(x) есть формула, а функция v(x) – это формула.

ЗАМЕЧАНИЕ: константу С при нахождении функции v(x) считают равной нулю.

Теперь все подставляем в формулу интегрирования по частям:
формула

Ответ:

формула.


Самое сложное, что есть в этом методе – это правильно определить, какую часть подынтегрального выражения брать за u(x), а какую за d(v(x)).

Рассмотрим стандартные случаи.

В других случаях, какую часть подынтегрального выражения брать за функцию u(x), а какую за d(v(x)) выявляется методом проб и ошибок.

Рекомендуем рассмотреть основные методы интегрирования.

Некогда разбираться?

Закажите решение