Первообразная и неопределенный интеграл, их свойства.
Определение первообразной.
Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.
Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.
Определение неопределенного интеграла.
Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .
Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).
Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.
На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).
-
Производная результата интегрирования равна подынтегральной функции. -
Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы. -
, где k – произвольная константа.
Коэффициент можно выносить за знак неопределенного интеграла. -
Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.
Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.
Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:
Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.
Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:
- первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;
- второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.
Рассмотрим пример.
Пример.
Найти первообразную функции , значение которой равно единице при х = 1.
Решение.
Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом,
. По второму свойству
. То есть, имеем множество первообразных
. При х = 1 получим значение
. По условию, это значение должно быть равно единице, следовательно, С = 1. Искомая первообразная примет вид
.
Пример.
Найти неопределенный интеграл и результат проверить дифференцированием.
Решение.
По формуле синуса двойного угла из тригонометрии , поэтому
Из таблицы производных для тригонометрических функций имеем
То есть,
По третьему свойству неопределенного интеграла можем записать
Обращаясь ко второму свойству, получим .
Следовательно,
Проверка.
Для проверки результата продифференцируем полученное выражение:
В итоге получили подынтегральную функцию, значит, интегрирование выполнено правильно. В последнем переходе была использована формула синуса двойного угла.
Если таблицу производных основных элементарных функций переписать в виде дифференциалов, то из нее по второму свойству неопределенного интеграла можно составить таблицу первообразных.
Но об этом читайте в следующем разделе: таблица первообразных (таблица неопределенных интегралов)
Некогда разбираться?