Понятие неравенства, связанные определения.
Обратной стороной равенства выступает неравенство. В этой статье мы введем понятие неравенства, и дадим начальную информацию о них в контексте математики.
Сначала разберем, что такое неравенство, введем понятия не равно, больше, меньше. Дальше поговорим о записи неравенств с помощью знаков не равно, меньше, больше, меньше или равно, больше или равно. После этого затронем основные типы неравенств, дадим определения строгих и нестрогих, верных и неверных неравенств. Дальше мимоходом перечислим основные свойства неравенств. Наконец, остановимся на двойных, тройных и т.д. неравенствах, и разберем, какой смысл они несут в себе.
Что такое неравенство?
Понятие неравенства, как и понятие равенства, связано со сравнением двух объектов. И если равенство характеризуется словом «одинаковые», то неравенство, напротив, говорит о различии сравниваемых объектов. Например, объекты и - одинаковые, про них можно сказать, что они равные. А вот два объекта и отличаются, то есть, они не равны или неравные.
Неравенство сравниваемых объектов познается вместе со смыслом таких слов, как выше, ниже (неравенство по высоте), толще, тоньше (неравенство по толщине), дальше, ближе (неравенство по удаленности от чего-либо), длиннее, короче (неравенство по длине), тяжелее, легче (неравенство по весу), ярче, тусклее (неравенство по яркости), теплее, холоднее и т.п.
Как мы уже отмечали при знакомстве с равенствами, можно говорить как о равенстве двух объектов в целом, так и о равенстве их некоторых характеристик. Это же относится и к неравенствам. В качестве примера приведем два объекта и . Очевидно, они не одинаковые, то есть, в целом они неравные. Они не равны по размеру, также они не равны по цвету, однако, можно говорить о равенстве их форм – они оба являются кругами.
В математике общий смысл неравенства сохраняется. Но в ее контексте речь идет о неравенстве математических объектов: чисел, значений выражений, значений каких-либо величин (длин, весов, площадей, температур и т.п.), фигур, векторов и т.п.
Не равно, больше, меньше
Иногда ценность представляет именно сам факт неравенства двух объектов. А когда сравниваются значения каких-либо величин, то, выяснив их неравенство, обычно идут дальше, и выясняют, какая величина больше, а какая – меньше.
Смысл слов «больше» и «меньше» мы познаем практически с первых дней нашей жизни. На интуитивном уровне мы воспринимаем понятие больше и меньше в плане размера, количества и т.п. А дальше постепенно начинаем осознавать, что при этом фактически речь идет о сравнении чисел, отвечающим количеству некоторых предметов или значениям некоторых величин. То есть, в этих случаях мы выясняем, какое из чисел больше, а какое – меньше.
Приведем пример. Рассмотрим два отрезка AB и CD, и сравним их длины . Очевидно, они не равны, также очевидно, что отрезок AB длиннее отрезка CD. Таким образом, согласно смыслу слова «длиннее», длина отрезка AB больше длины отрезка CD, и в то же время длина отрезка CD меньше длины отрезка AB.
Еще пример. С утра была зафиксирована температура воздуха 11 градусов Цельсия, а в обед – 24 градуса. Согласно правилам сравнения натуральных чисел, 11 меньше 24, следовательно, значение температуры с утра было меньше, чем ее значение в обед (температура в обед стала больше, чем была температура с утра).
Запись неравенств с помощью знаков
На письме приняты несколько знаков для записи неравенств. Первый из них – знак не равно, он представляет собой перечеркнутый знак равно: ≠. Знак не равно ставится между неравными объектами. Например, запись |AB|≠|CD| обозначает, что длина отрезка AB не равна длине отрезка CD. Аналогично, 3≠5 – три не равно пяти.
Аналогично используются знак больше > и знак меньше ≤. Знак больше записывается между большим и меньшим объектами, а знак меньше – между меньшим и большим. Приведем примеры использования этих знаков. Запись 7>1 читается как семь больше одного, а записать, что площадь треугольника ABC меньше площади треугольника DEF с использованием знака ≤ можно как SABC≤SDEF.
Также широко в ходу знак больше или равно вида ≥, а также знак меньше или равно ≤. Подробнее об их смысле и назначении поговорим в следующем пункте.
Еще заметим, что алгебраические записи со знаками не равно, меньше, больше, меньше или равно, больше или равно, аналогичные рассмотренным выше, называют неравенствами. Более того, имеет место определение неравенств в смысле вида их записи:
Определение.
Неравенства – это имеющие смысл алгебраические выражения, составленные с использованием знаков ≠, <, >, ≤, ≥.
Строгие и нестрогие неравенства
Определение.
Знаки меньше < и больше > называют знаками строгих неравенств, а записанные с их помощью неравенства – строгими неравенствами.
В свою очередь
Определение.
Знаки меньше или равно ≤ и больше или равно ≥ называют знаками нестрогих неравенств, а составленные с их использованием неравенства – нестрогими неравенствами.
Сфера применения строгих неравенств понятна из вышеприведенной информации. А для чего нужны нестрогие неравенства? На практике с их помощью удобно моделировать ситуации, которые можно описать фразами «не больше» и «не меньше». Фраза «не больше» по сути означает меньше или столько же, ей отвечает знак меньше или равно вида ≤. Аналогично, «не меньше» значит столько же или больше, ей соответствует знак больше или равно ≥.
Отсюда становится понятно, почему знаки < и > получили название знаков строгих неравенств, а ≤ и ≥ - нестрогих. Первые исключают возможность равенства объектов, а вторые – допускают ее.
В заключение этого пункта покажем пару примеров использования нестрогих неравенств. Например, с помощью знака больше или равно можно записать тот факт, что модуль числа a является неотрицательным числом, как |a|≥0. Еще пример: известно, что среднее геометрическое двух положительных чисел a и b меньше или равно их среднему арифметическому, то есть, .
Верные и неверные неравенства
Неравенства могут быть верными или неверными.
Определение.
Неравенство является верным, если оно соответствует введенному выше смыслу неравенства, в противном случае оно является неверным.
Приведем примеры верных и неверных неравенств. Например, 3≠3 – это неверное неравенство, так как числи 3 и 3 равные. Другой пример: пусть S – это площадь некоторой фигуры, тогда S<−7 – неверное неравенство, так как известно, что площадь фигуры по определению выражается неотрицательным числом. И еще пример неверного неравенства: |AB|>|AB|. А вот неравенства −3<12, |AB|≤|AC|+|BC| и |−4|≥0 – верные. Первое из них отвечает правилу сравнения чисел с разными знаками, второе – выражает неравенство треугольника, а третье – согласуется с определением модуля числа.
Отметим, что наряду со словосочетанием «верное неравенство» используются такие словосочетания: «справедливое неравенство», «имеет место неравенство» и т.п., означающие одно и то же.
Свойства неравенств
Согласно тому, как мы ввели понятие неравенства, можно описать основные свойства неравенств. Понятно, что объект не может быть не равен самому себе. В этом состоит первое свойство неравенств. Второе свойство не менее очевидно: если первый объект не равен второму, то второй не равен первому.
Введенные на некотором множестве понятия «меньше» и «больше» задают на исходном множестве так называемые отношения «меньше» и «больше». Это же относится и к отношениям «меньше или равно» и «больше или равно». Они также обладают характерными свойствами.
Начнем со свойств отношений, которым соответствуют знаки < и >. Перечислим их, после чего дадим необходимые комментарии для пояснения:
- антирефлексивность;
- антисимметричность;
- транзитивность.
Свойство антирефлексивности с помощью букв можно записать так: для любого объекта a неравенства a>a и a<a – являются неверными. Свойство антисимметричности утверждает, что если первый объект больше (меньше) второго, то второй объект соответственно меньше (больше) первого. В формальной записи, если a>b, то b<a, а также, если a<b, то b>a. Наконец, свойство транзитивности состоит в том, что из a<b и b<c следует, что a<c, а также, из a>b и b>c следует, что a>c. Это свойство также воспринимается достаточно естественно: если первый объект меньше (больше) второго, а второй меньше (больше) третьего, то понятно, что первый объект подавно меньше (больше) третьего.
В свою очередь отношениям «меньше или равно» и «больше или равно» присущи следующие свойства:
- рефлексивности: имеют место неравенства a≤a и a≥a (так как они включают в себя случай a=a);
- антисимметричности: если a≤b, то b≥a, и если a≥b, то b≤a;
- транзитивности: из a≤b и b≤c следует, что a≤c, а из a≥b и b≥c следует, что a≥c.
Двойные, тройные неравенства и т.д.
Свойство транзитивности, которое мы затронули в предыдущем пункте, позволяет составлять так называемые двойные, тройные и т.д. неравенства, представляющие собой цепочки неравенств. Для примера приведем двойное неравенство a<b<c и тройное неравенство q1≥q2≥q3≥q4.
Теперь разберем, как понимать такие записи. Их следует трактовать в согласии со смыслом содержащихся в них знаков. Например, двойное неравенство a<b<c по сути представляет собой краткую запись трех неравенств a<b, b<c и a<c, причем третье из них как бы излишне, так как следует из первых двух по свойству транзитивности. Аналогично, указанное выше тройное неравенство q1≥q2≥q3≥q4 можно рассматривать как три основных неравенства q1≥q2, q2≥q3, q3≥q4 и следующих из них неравенств вида q1≥q3, q1≥q4, q2≥q4.
В заключение заметим, что иногда удобно использовать записи в виде цепочек, содержащих одновременно как знаки равно, не равно, так и знаки строгих и нестрогих неравенств. Например, x=2<y≤z<17.
Список литературы.
- Моро М. И.. Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
- Математика: учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.