Выражения, преобразование выражений Помощь в написании работ

Преобразование рациональных выражений, виды преобразований, примеры.


Эта статья посвящена преобразованию рациональных выражений, преимущественно дробно рациональных, – одному из ключевых вопросов курса алгебры для 8 классов. Сначала мы напомним, выражения какого вида называют рациональными. Дальше остановимся на проведении стандартных преобразований с рациональными выражениями, таких как группировка слагаемых, вынесение за скобки общих множителей, приведение подобных слагаемых и т.п. Наконец, научимся представлять дробные рациональные выражения в виде рациональных дробей.


Определение и примеры рациональных выражений

Рациональные выражения являются одним из видов выражений, изучаемых на уроках алгебры в школе. Дадим определение.

Определение.

Выражения, составленные из чисел, переменных, скобок, степеней с целыми показателями, соединенных с помощью знаков арифметических действий +, −, · и :, где деление может быть обозначено чертой дроби, называются рациональными выражениями.

Приведем несколько примеров рациональных выражений: .

Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями, то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены, а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений.

В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями. При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей.

Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.

Основные виды преобразований рациональных выражений


С рациональными выражениями можно проводить любые из основных тождественных преобразований, будь то группировка слагаемых или множителей, приведение подобных слагаемых, выполнение действий с числами и т.п. Обычно целью выполнения этих преобразований является упрощение рационального выражения.

Пример.

Преобразуйте рациональное выражение .

Решение.

Понятно, что данное рациональное выражение представляет собой разность двух выражений и , причем данные выражения являются подобными, так как имеют одинаковую буквенную часть. Таким образом, мы можем выполнить приведение подобных слагаемых:

Ответ:

.

Понятно, что при проведении преобразований с рациональными выражениями, как, впрочем, и с любыми другими выражениями, нужно оставаться в рамках принятого порядка выполнения действий.

Пример.

Выполните преобразование рационального выражения .

Решение.

Мы знаем, что сначала выполняются действия в скобках. Поэтому в первую очередь преобразуем выражение в скобках: 3·x−x=2·x.

Теперь можно подставить полученный результат в исходное рациональное выражение: . Так мы пришли к выражению, содержащему действия одной ступени – сложение и умножение.

Избавимся от скобок в конце выражения, применив свойство деления на произведение: .

Наконец, мы можем сгруппировать числовые множители и множители с переменной x, после чего выполнить соответствующие действия с числами и применить свойства степени: .

На этом преобразование рационального выражения завершено, и в результате мы получили одночлен.

Ответ:

Пример.

Преобразуйте рациональное выражение .

Решение.

Сначала преобразуем числитель и знаменатель. Такой порядок преобразования дробей объясняется тем, что черта дроби по своей сути есть другое обозначение деления, и исходное рациональное выражение по сути есть частное вида , а действия в скобках выполняются в первую очередь.

Итак, в числителе выполняем действия с многочленами, сначала умножение, затем – вычитание, а в знаменателе сгруппируем числовые множители, и вычислим их произведение: .

Еще представим числитель и знаменатель полученной дроби в виде произведения: вдруг возможно сокращение алгебраической дроби. Для этого в числителе воспользуемся формулой разности квадратов, а в знаменателе вынесем двойку за скобки, имеем .

Ответ:

.

Итак, начальное знакомство с преобразованием рациональных выражений можно считать состоявшимся. Переходим, так сказать, к самому сладкому.

Представление в виде рациональной дроби

Наиболее часто конечной целью преобразования выражений является упрощение их вида. В этом свете самым простым видом, к которому можно преобразовать дробно рациональное выражение, является рациональная (алгебраическая) дробь, и в частном случае многочлен, одночлен или число.

А любое ли рациональное выражение возможно представить в виде рациональной дроби? Ответ утвердительный. Поясним, почему это так.

Как мы уже сказали, всякое рациональное выражение можно рассматривать как многочлены и рациональные дроби, соединенные знаками плюс, минус, умножить и разделить. Все соответствующие действия с многочленами дают многочлен или рациональную дробь. В свою очередь любой многочлен можно преобразовать в алгебраическую дробь, записав его со знаменателем 1. А сложение, вычитание, умножение и деление рациональных дробей в результате дают новую рациональную дробь. Следовательно, выполнив все действия с многочленами и рациональными дробями в рациональном выражении, мы получим рациональную дробь.

Пример.

Представьте в виде рациональной дроби выражение .

Решение.

Исходное рациональное выражение представляет собой разность дроби и произведения дробей вида . Согласно порядку выполнения действий мы сначала должны выполнить умножение, а уже потом – сложение.

Начинаем с умножения алгебраических дробей:

Подставляем полученный результат в исходное рациональное выражение: .

Мы пришли к вычитанию алгебраических дробей с разными знаменателями:

Итак, выполнив действия с рациональными дробями, составляющими исходное рациональное выражение, мы его представили в виде рациональной дроби .

Ответ:

.

Для закрепления материала разберем решение еще одного примера.

Пример.

Представьте рациональное выражение в виде рациональной дроби.

Решение.

Исходное выражение представляет собой дробь, в числителе которой находится сумма , а в знаменателе – дробь . Преобразуем сумму , выполнив сложение алгебраической дроби и числа: .

Таким образом, .

Полученную дробь можно переписать в виде частного . Выполнив деление алгебраических дробей, мы придем к нужной нам рациональной дроби:

Представление исходного рационального выражения в виде рациональной дроби можно было получить и иначе. Покажем другой способ решения.

Деление на дробь можно было заменить умножением на обратную ей дробь , после чего воспользоваться распределительным свойством умножения относительно сложения. Цепочка преобразований рационального выражения в этом случае выглядела бы так:

Ответ:

.

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+