Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование


В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.


Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, [1]. После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений. Причем будем их представлять согласно тому, как происходит развитие взглядов на степень числа от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 32, 75+1, (2+1)5, (−0,1)4, , 3·a2−a+a2, x3−1, (a2)3 и т.п.

Дальше вводится нулевая степень числа, и начинают встречаться выражения, содержащие степени с нулевым показателем, например, 50, (a+1)0, 3+52−3,20, …

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3−2, , a−2+2·b−3+c2.

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2x2+1 или . А после знакомства с логарифмом, начинают встречаться выражения со степенями и логарифмами, к примеру, x2·lgx−5·xlgx.

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений


Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений. Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий. Приведем примеры.

Пример.

Вычислите значение степенного выражения 23·(42−12).

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 42 ее значением 16 (при необходимости смотрите возведение в степень), и во-вторых, вычисляем разность 16−12=4. Имеем 23·(42−12)=23·(16−12)=23·4.

В полученном выражении заменяем степень 23 ее значением 8, после чего вычисляем произведение 8·4=32. Это и есть искомое значение.

Итак, 23·(42−12)=23·(16−12)=23·4=8·4=32.

Ответ:

23·(42−12)=32.

Пример.

Упростить выражения со степенями 3·a4·b−7−1+2·a4·b−7.

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a4·b−7 и 2·a4·b−7, и мы можем привести их: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Ответ:

3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 32 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

.

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7)5−3,7 и (a·(a+1)−a2)2·(x+1).

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7)5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,11,3. А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a2)2·(x+1) мы получим степенное выражение более простого вида a2·(x+1).

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие свойства степеней. Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство am·an=am+n верно не только для положительных a, но и для отрицательных, и для a=0.

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней. Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a2,5·(a2)−3:a−5,5 в виде степени с основанием a.

Решение.

Сначала второй множитель (a2)−3 преобразуем по свойству возведения степени в степень: (a2)−3=a2·(−3)=a−6. Исходное степенное выражение при этом примет вид a2,5·a−6:a−5,5. Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a2,5·a−6:a−5,5=
a2,5−6:a−5,5=a−3,5:a−5,5=
a−3,5−(−5,5)=a2.

Ответ:

a2,5·(a2)−3:a−5,5=a2.

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b)r=ar·br, примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a1,5−a0,5−6, введите новую переменную t=a0,5.

Решение.

Степень a1,5 можно представить как a0,5·3 и дальше на базе свойства степени в степени (ar)s=ar·s, примененного справа налево, преобразовать ее к виду (a0,5)3. Таким образом, a1,5−a0,5−6=(a0,5)3−a0,5−6. Теперь легко ввести новую переменную t=a0,5, получаем t3−t−6.

Ответ:

t3−t−6.

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей, которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a, б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a0,3, так как a0,7·a0,3=a0,7+0,3=a. Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на наибольший общий делитель (НОД) чисел 30 и 45, который равен 15. Также, очевидно, можно выполнить сокращение на x0,5+1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x1/2, после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x2,7+1)2, это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно).

Пример.

Представьте выражение в виде степени.

Решение.

Область допустимых значений переменной x определяется двумя неравенствами x≥0 и , которые задают множество [0, +∞). На этом множестве мы имеем право перейти от корней к степеням: . Остается лишь упростить полученное степенное выражение, обратившись к свойствам степеней:

Ответ:

.

Преобразование степеней с переменными в показателе

После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция, которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств, и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 52·x+1−3·5x·7x−14·72·x−1=0.

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
52·x·51−3·5x·7x−14·72·x·7−1=0,
5·52·x−3·5x·7x−2·72·x=0.

Дальше выполняется деление обеих частей равенства на выражение 72·x, которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения 5·t2−3·t−2=0.

Как видите, преобразование степенных выражений с переменными в показателях степеней проводятся по принципам, разобранным в предыдущих пунктах.

Преобразование выражений со степенями и логарифмами

Введение в обиход логарифма приводит к появлению выражений, содержащих в своей записи степени и логарифмы. Для наглядности приведем несколько таких выражений: , . Для их преобразования могут применяться все выше разобранные подходы. Но здесь еще непременно понадобятся свойства логарифмов. Преобразованием подобных выражений мы займемся в статье преобразование логарифмических выражений.

Список литературы.

  1. И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.