Выражения, преобразование выражений

Преобразование выражений с дробями, примеры, решения


Материал этой статьи представляет собой общий взгляд на преобразование выражений, содержащих дроби. Здесь мы рассмотрим основные преобразования, которые характерны для выражений с дробями.


Выражения с дробями и дробные выражения

Для начала проясним, с преобразованием выражений какого вида мы собрались разбираться.

В заголовке статьи фигурирует говорящее за себя словосочетание «выражения с дробями». То есть, ниже речь пойдет о преобразовании числовых выражений и выражений с переменными, в записи которых присутствует хотя бы одна дробь.

Сразу заметим, что после выхода в свет статьи «преобразование дробей: общий взгляд» нам уже не интересны отдельные дроби. Таким образом, дальше мы будем рассматривать суммы, разности, произведения, частные и более сложные выражения с корнями, степенями, логарифмами, объединяет которые лишь наличие хотя бы одной дроби.

И еще оговоримся про дробные выражения. Это не то же самое, что выражения с дробями. Выражения с дробями – более общее понятие. Не каждое выражение с дробями есть дробное выражение. Например, выражение не является дробным выражением, хотя и содержит дробь, это целое рациональное выражение. Так что не стоит называть выражение с дробями дробным выражением, не будучи полностью уверенным, что оно является таковым.

Основные тождественные преобразования выражений с дробями


Мы хорошо знакомы с рядом тождественных преобразований, которые можно проводить с различными выражениями. К таким преобразованиям относится перестановка местами слагаемых и множителей, раскрытие скобок, приведение подобных слагаемых и т.д. Эти преобразования имеют место и для выражений с дробями.

Понятно, что все преобразования должны проводиться в согласии с принятым порядком выполнения действий.

Пример.

Упростите выражение .

Решение.

В данном случае можно раскрыть скобки, что даст выражение , в котором присутствуют подобные слагаемые и , а также −3 и 3. После их приведения получим дробь .

Покажем краткую форму записи решения:

Ответ:

.

Пример.

Представьте выражение в виде квадрата суммы.

Решение.

Представим число 6 как 2·3, а 9 как 32. В результате исходное выражение с дробями примет вид . Остается воспользоваться формулой сокращенного умножения квадрат суммы: .

Ответ:

.

Работа с отдельными дробями

Выражения, о преобразовании которых мы говорим, отличаются от других выражений главным образом наличием дробей. А наличие дробей требует инструментов для работы с ними. В этом пункте мы обсудим преобразование отдельных дробей, входящих в запись данного выражения, а в следующем пункте перейдем к выполнению действий с дробями, составляющими исходное выражение.

С любой дробью, которая является составной частью исходного выражения, можно выполнять любое из преобразований, обозначенных в статье преобразование дробей. То есть, можно взять отдельную дробь, поработать с ее числителем и знаменателем, сократить ее, привести к новому знаменателю и т.д. Понятно, что при этом преобразовании выбранная дробь заменится тождественно равной ей дробью, а исходное выражение – тождественно равным ему выражением. Давайте рассмотрим пример.

Пример.

Преобразовать выражение с дробью к более простому виду.

Решение.

Преобразование начнем с того, что поработаем с дробью . Для начала раскроем скобки и приведем подобные слагаемые в числителе дроби: . Теперь напрашивается вынесение за скобки общего множителя x в числителе и последующее сокращение алгебраической дроби: . Остается лишь подставить полученный результат вместо дроби в исходное выражение, что дает .

Ответ:

.

Выполнение действий с дробями

Частью процесса преобразования выражений с дробями часто является выполнение действий с дробями. Они проводятся в соответствии с принятым порядком выполнения действий. Также стоит иметь в виду, что любое число или выражение всегда можно представить в виде дроби со знаменателем 1.

Пример.

Упростите выражение .

Решение.

К решению поставленной задачи можно подходить с разных сторон. Мы в контексте разбираемой темы пойдем путем выполнения действий с дробями. Начнем с умножения дробей:

Теперь произведение запишем в виде дроби со знаменателем 1, после чего проведем вычитание дробей:

При желании и необходимости можно еще освободиться от иррациональности в знаменателе , на чем можно закончить преобразования.

Ответ:

.

Применение свойств корней, степеней, логарифмов и т.п.

Класс выражений с дробями очень широк. Такие выражения помимо собственно дробей, могут содержать корни, степени с различными показателями, модули, логарифмы, тригонометрические функции и т.п. Естественно, при их преобразовании применяются соответствующие свойства.

Применимо к дробям, стоит выделить свойство корня из дроби , свойство дроби в степени , свойство модуля частного и свойство логарифма разности .

Для наглядности приведем несколько примеров. Например, в выражении может быть полезно на базе свойств степени первую дробь заменить степенью , что в дальнейшем позволяет представить выражение в виде квадрата разности. При преобразовании логарифмического выражения можно логарифм дроби заменить разностью логарифмов, что в дальнейшем позволяет привести подобные слагаемые и тем самым упростить выражение: . Преобразование тригонометрических выражений может потребовать заменить отношение синуса к косинусу одного и того же угла тангенсом. Также возможно придется от половинного аргумента по соответствующим формулам переходить к целому аргументу, тем самым избавляясь от аргумента-дроби, например, .

Применение свойств корней, степеней и т.п. к преобразованию выражений более подробно освещено в статьях: