Уравнения, решение уравнений Помощь в написании работ

Решение целых и дробно рациональных уравнений


Продолжаем разговор про решение уравнений. В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.


Что такое рациональные уравнения?

В начале 8 класса на уроках алгебры начинается всестороннее изучение рациональных выражений. А вскоре, естественно, начинают встречаться уравнения, содержащие рациональные выражения в своих записях. Такие уравнения назвали рациональными. Сформулируем озвученную информацию в виде определения рациональных уравнений.

Определение.

Рациональные уравнения - это уравнения, обе части которого являются рациональными выражениями.

Иногда встречается определение в немного другой формулировке:

Определение.

Рациональными уравнениями называют уравнения, в левой части которого находится рациональное выражение, а в правой – нуль.

Здесь стоит заметить, что по сути оба приведенных определения эквивалентны, так как для любых рациональных выражений P и Q уравнения P=Q и P−Q=0 являются равносильными уравнениями.

Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Например, x=1, 2·x−12·x2·y·z3=0, , - это все рациональные уравнения.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Определение.

Рациональное уравнение называют целым, если и левая, и правая его части являются целыми рациональными выражениями.

Определение.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x2−1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x3+y2)=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений


Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям. Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения:

В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае – к решению алгебраического уравнения степени n. Для наглядности разберем решение примера.

Пример.

Найдите корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3.

Решение.

Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. Для этого, во-первых, перенесем выражение из правой части в левую, в результате приходим к уравнению 3·(x+1)·(x−3)−x·(2·x−1)+3=0. И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые действия с многочленами: 3·(x+1)·(x−3)−x·(2·x−1)+3=(3·x+3)·(x−3)−2·x2+x+3=3·x2−9·x+3·x−9−2·x2+x+3=x2−5·x−6. Таким образом, решение исходного целого уравнения сводится к решению квадратного уравнения x2−5·x−6=0.

Вычисляем его дискриминант D=(−5)2−4·1·(−6)=25+24=49, он положительный, значит, уравнение имеет два действительных корня, которые находим по формуле корней квадратного уравнения:

Для полной уверенности выполним проверку найденных корней уравнения. Сначала проверяем корень 6, подставляем его вместо переменной x в исходное целое уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3, что то же самое, 63=63. Это верное числовое равенство, следовательно, x=6 действительно является корнем уравнения. Теперь проверяем корень −1, имеем 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3, откуда, 0=0. При x=−1 исходное уравнение также обратилось в верное числовое равенство, следовательно, x=−1 тоже является корнем уравнения.

Ответ:

6, −1.

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Определение.

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители. При этом придерживаются следующего алгоритма:

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Пример.

Решите целое уравнение (x2−1)·(x2−10·x+13)=2·x·(x2−10·x+13).

Решение.

Сначала как обычно переносим выражение из правой части в левую часть уравнения, не забыв изменить знак, получаем (x2−1)·(x2−10·x+13)−2·x·(x2−10·x+13)=0. Здесь достаточно очевидно, что не целесообразно преобразовывать левую часть полученного уравнения в многочлен стандартного вида, так как это даст алгебраическое уравнение четвертой степени вида x4−12·x3+32·x2−16·x−13=0, решение которого сложно.

С другой стороны, очевидно, что в левой части полученного уравнения можно вынести за скобки общий множитель x2−10·x+13, тем самым представив ее в виде произведения. Имеем (x2−10·x+13)·(x2−2·x−1)=0. Полученное уравнение равносильно исходному целому уравнению, и его, в свою очередь, можно заменить совокупностью двух квадратных уравнений x2−10·x+13=0 и x2−2·x−1=0. Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны . Они являются искомыми корнями исходного уравнения.

Ответ:

.

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной. В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Пример.

Найдите действительные корни рационального уравнения (x2+3·x+1)2+10=−2·(x2+3·x−4).

Решение.

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Здесь несложно заметить, что можно ввести новую переменную y, и заменить ею выражение x2+3·x. Такая замена приводит нас к целому уравнению (y+1)2+10=−2·(y−4), которое после переноса выражения −2·(y−4) в левую часть и последующего преобразования образовавшегося там выражения, сводится к квадратному уравнению y2+4·y+3=0. Корни этого уравнения y=−1 и y=−3 легко находятся, например, их можно подобрать, основываясь на теореме, обратной теореме Виета.

Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. Выполнив обратную замену, получаем два уравнения x2+3·x=−1 и x2+3·x=−3, которые можно переписать как x2+3·x+1=0 и x2+3·x+3=0. По формуле корней квадратного уравнения находим корни первого уравнения . А второе квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен (D=32−4·3=9−12=−3).

Ответ:

.

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p(x) и q(x) – целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида.

В основе одного из подходов к решению уравнения лежит следующее утверждение: числовая дробь u/v, где v – отличное от нуля число (иначе мы столкнемся с делением на нуль, которое не определено), равна нулю тогда и только тогда, когда ее числитель равен нулю, то есть, тогда и только тогда, когда u=0. В силу этого утверждения, решение уравнения сводится к выполнению двух условий p(x)=0 и q(x)≠0.

Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения . Чтобы решить дробное рациональное уравнение вида , надо

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Пример.

Найдите корни уравнения .

Решение.

Это дробно рациональное уравнение, причем вида , где p(x)=3·x−2, q(x)=5·x2−2=0.

Согласно алгоритму решения дробно рациональных уравнений этого вида, нам сначала надо решить уравнение 3·x−2=0. Это линейное уравнение, корнем которого является x=2/3.

Осталось выполнить проверку для этого корня, то есть проверить, удовлетворяет ли он условию 5·x2−2≠0. Подставляем в выражение 5·x2−2 вместо x число 2/3, получаем . Условие выполнено, поэтому x=2/3 является корнем исходного уравнения.

Ответ:

2/3.

К решению дробного рационального уравнения можно подходить с немного другой позиции. Это уравнение равносильно целому уравнению p(x)=0 на области допустимых значений (ОДЗ) переменной x исходного уравнения. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения :

Для примера решим дробное рациональное уравнение по этому алгоритму.

Пример.

Решите уравнение .

Решение.

Во-первых, решаем квадратное уравнение x2−2·x−11=0. Его корни можно вычислить, используя формулу корней для четного второго коэффициента, имеем D1=(−1)2−1·(−11)=12, и .

Во-вторых, находим ОДЗ переменной x для исходного уравнения. Ее составляют все числа, для которых x2+3·x≠0, что то же самое x·(x+3)≠0, откуда x≠0, x≠−3.

Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Очевидно, да. Следовательно, исходное дробно рациональное уравнение имеет два корня .

Ответ:

.

Отметим, что такой подход выгоднее первого, если легко находится ОДЗ, и особенно выгоден, если еще при этом корни уравнения p(x)=0 иррациональные, например, , или рациональные, но с довольно большим числителем и/или знаменателем, к примеру, 127/1101 и −31/59. Это связано с тем, что в таких случаях проверка условия q(x)≠0 потребует значительных вычислительных усилий, и проще исключить посторонние корни по ОДЗ.

В остальных случаях при решении уравнения , особенно когда корни уравнения p(x)=0 целые, выгоднее использовать первый из приведенных алгоритмов. То есть, целесообразно сразу находить корни целого уравнения p(x)=0, после чего проверять, выполняется ли для них условие q(x)≠0, а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Пример.

Найдите корни уравнения .

Решение.

Сначала найдем корни целого уравнения (2·x−1)·(x−6)·(x2−5·x+14)·(x+1)=0, составленного с использованием числителя дроби. Левая часть этого уравнения – произведение, а правая – нуль, поэтому, согласно методу решения уравнений через разложение на множители, это уравнение равносильно совокупности четырех уравнений 2·x−1=0, x−6=0, x2−5·x+14=0, x+1=0. Три из этих уравнений линейные и одно – квадратное, их мы умеем решать. Из первого уравнения находим x=1/2, из второго – x=6, из третьего – x=7, x=−2, из четвертого – x=−1.

С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Для этого по очереди подставляем их вместо переменной x в выражение x5−15·x4+57·x3−13·x2+26·x+112, вычисляем значения выражений, получающихся после подстановки, и сравниваем их с нулем: (1/2)5−15·(1/2)4+57·(1/2)3−13·(1/2)2+26·(1/2)+112=1/32−15/16+57/8−13/4+13+112=122+1/32≠0;
65−15·64+57·63−13·62+26·6+112=448≠0;
75−15·74+57·73−13·72+26·7+112=0;
(−2)5−15·(−2)4+57·(−2)3−13·(−2)2+26·(−2)+112=−720≠0;
(−1)5−15·(−1)4+57·(−1)3−13·(−1)2+26·(−1)+112=0.

Таким образом, 1/2, 6 и −2 являются искомыми корнями исходного дробно рационального уравнения, а 7 и −1 – посторонние корни.

Ответ:

1/2, 6, −2.

Пример.

Найдите корни дробного рационального уравнения .

Решение.

Сначала найдем корни уравнения (5·x2−7·x−1)·(x−2)=0. Это уравнение равносильно совокупности двух уравнений: квадратного 5·x2−7·x−1=0 и линейного x−2=0. По формуле корней квадратного уравнения находим два корня , а из второго уравнения имеем x=2.

Проверять, не обращается ли в нуль знаменатель при найденных значениях x, достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ.

В нашем случае ОДЗ переменной x исходного дробно рационального уравнения составляют все числа, кроме тех, для которых выполняется условие x2+5·x−14=0. Корнями этого квадратного уравнения являются x=−7 и x=2, откуда делаем вывод про ОДЗ: ее составляют все такие x, что .

Остается проверить, принадлежат ли найденные корни и x=2 области допустимых значений. Корни - принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.

Ответ:

.

Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p(x) представлено каким-либо числом. При этом

Пример.

Решите дробное рациональное уравнение .

Решение.

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

Ответ:

нет корней.

Пример.

Решите уравнение .

Решение.

В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x, при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной.

Осталось определить эту область допустимых значений. Она включает все такие значения x, при которых x4+5·x3≠0. Решениями уравнения x4+5·x3=0 являются 0 и −5, так как, это уравнение равносильно уравнению x3·(x+5)=0, а оно в свою очередь равносильно совокупности двух уравнений x3=0 и x+5=0, откуда и видны эти корни. Следовательно, искомой областью допустимых значений являются любые x, кроме x=0 и x=−5.

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Ответ:

.

Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Их можно записать как r(x)=s(x), где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида .

Известно, что перенос слагаемого из одной части уравнения в другую с противоположным знаком приводит к равносильному уравнению, поэтому уравнению r(x)=s(x) равносильно уравнение r(x)−s(x)=0.

Также мы знаем, что можно любое рациональное выражение преобразовать в рациональную дробь, тождественно равную этому выражению. Таким образом, рациональное выражение в левой части уравнения r(x)−s(x)=0 мы всегда можем преобразовать в тождественно равную рациональную дробь вида .

Так мы от исходного дробного рационального уравнения r(x)=s(x) переходим к уравнению , а его решение, как мы выяснили выше, сводится к решению уравнения p(x)=0.

Но здесь обязательно надо учитывать тот факт, что при замене r(x)−s(x)=0 на , и дальше на p(x)=0, может произойти расширение области допустимых значений переменной x.

Следовательно, исходное уравнение r(x)=s(x) и уравнение p(x)=0, к которому мы пришли, могут оказаться неравносильными, и, решив уравнение p(x)=0, мы можем получить корни, которые будут посторонними корнями исходного уравнения r(x)=s(x). Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения.

Обобщим эту информацию в алгоритм решения дробного рационального уравнения r(x)=s(x). Чтобы решить дробное рациональное уравнение r(x)=s(x), надо

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Пример.

Решите дробное рациональное уравнение .

Решение.

Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению .

На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби . Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: . Так мы приходим к уравнению .

На следующем этапе нам нужно решить уравнение −2·x−1=0. Находим x=−1/2.

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Начнем с проверки. Подставляем в исходное уравнение вместо переменной x число −1/2, получаем , что то же самое, −1=−1. Подстановка дает верное числовое равенство, поэтому, x=−1/2 является корнем исходного уравнения.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Ответ:

−1/2.

Рассмотрим еще пример.

Пример.

Найдите корни уравнения .

Решение.

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Во-первых, переносим слагаемое из правой части в левую, получаем .

Во-вторых, преобразуем выражение, образовавшееся в левой части: . В результате приходим к уравнению x=0.

Его корень очевиден – это нуль.

На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение . Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней.

Ответ:

нет корней.

В заключение добавим, что совсем не обязательно слепо придерживаться приведенного алгоритма решения дробных рациональных уравнений, хотя он и является универсальным. Просто иногда другие равносильные преобразования уравнений позволяют прийти к результату быстрее и проще.

Пример.

Решите уравнение .

Решение.

Несомненно, это дробно рациональное уравнение можно решать, выполнив перенос слагаемого из правой части в левую, дальше преобразовать выражение в левой части к виду p(x)/q(x), дальше решить уравнение p(x)=0, и отсеять посторонние корни.

Но можно поступить и иначе, например, так.

Сначала отнять от обеих частей уравнения 7, что приводит к уравнению . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, . Теперь вычитаем из обеих частей тройки: . По аналогии , откуда , и дальше .

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Ответ:

.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+