Уравнение и его корни: определения, примеры
Получив общее представление о равенствах, и познакомившись с одним из их видов - числовыми равенствами, можно начать разговор еще об одном очень важном с практической точки зрения виде равенств - об уравнениях. В этой статье мы разберем, что такое уравнение, и что называют корнем уравнения. Здесь мы дадим соответствующие определения, а также приведем разнообразные примеры уравнений и их корней.
Что такое уравнение?
Целенаправленное знакомство с уравнениями обычно начинается на уроках математики во 2 классе. В это время дается следующее определение уравнения:
Определение.
Уравнение – это равенство, содержащее неизвестное число, которое надо найти.
Неизвестные числа в уравнениях принято обозначать с помощью маленьких латинских букв, например, p, t, u и т.п., но наиболее часто используются буквы x, y и z.
Таким образом, уравнение определяется с позиции формы записи. Иными словами, равенство является уравнением, когда подчиняется указанным правилам записи – содержит букву, значение которой нужно найти.
Приведем примеры самых первых и самых простых уравнений. Начнем с уравнений вида x=8, y=3 и т.п. Чуть сложнее выглядят уравнения, содержащие вместе с числами и буквами знаки арифметических действий, например, x+2=3, z−2=5, 3·t=9, 8:x=2.
Разнообразие уравнений растет после знакомства со скобками – начинают появляться уравнения со скобками, например, 2·(x−1)=18 и x+3·(x+2·(x−2))=3. Неизвестная буква в уравнении может присутствовать несколько раз, к примеру, x+3+3·x−2−x=9, также буквы могут быть в левой части уравнения, в его правой части, или в обеих частях уравнения, например, x·(3+1)−4=8, 7−3=z+1 или 3·x−4=2·(x+12).
Дальше после изучения натуральных чисел происходит знакомство с целыми, рациональными, действительными числами, изучаются новые математические объекты: степени, корни, логарифмы и т.д., при этом появляются все новые и новые виды уравнений, содержащие эти вещи. Их примеры можно посмотреть в статье основные виды уравнений, изучающиеся в школе.
В 7 классе наряду с буквами, под которыми подразумевают некоторые конкретные числа, начинают рассматривать буквы, которые могут принимать различные значения, их называют переменными (смотрите статью числовые, буквенные выражения и выражения с переменными). При этом в определение уравнения внедряется слово «переменная», и оно становится таким:
Определение.
Уравнением называют равенство, содержащее переменную, значение которой нужно найти.
Например, уравнение x+3=6·x+7 – уравнение с переменной x, а 3·z−1+z=0 – уравнение с переменной z.
На уроках алгебры в том же 7 классе происходит встреча с уравнениями, содержащими в своей записи не одну, а две различные неизвестные переменные. Их называют уравнениями с двумя переменными. В дальнейшем допускают присутствие в записи уравнений трех и большего количества переменных.
Определение.
Уравнения с одной, двумя, тремя и т.д. переменными – это уравнения, содержащие в своей записи одну, две, три, … неизвестные переменные соответственно.
Например, уравнение 3,2·x+0,5=1 – это уравнение с одной переменной x, в свою очередь уравнение вида x−y=3 – это уравнение с двумя переменными x и y. И еще один пример: x2+(y−1)2+(z+0,5)2=27. Понятно, что такое уравнение – это уравнение с тремя неизвестными переменными x, y и z.
Что такое корень уравнения?
С определением уравнения непосредственно связано определение корня этого уравнения. Проведем некоторые рассуждения, которые нам помогут понять, что такое корень уравнения.
Допустим, перед нами находится уравнение с одной буквой (переменной). Если вместо буквы, входящей в запись этого уравнения, подставить некоторое число, то уравнение обратиться в числовое равенство. Причем, полученное равенство может быть как верным, так и неверным. Например, если вместо буквы a в уравнение a+1=5 подставить число 2, то получится неверное числовое равенство 2+1=5. Если же мы в это уравнение подставим вместо a число 4, то получится верное равенство 4+1=5.
На практике в подавляющем большинстве случаев интерес представляют такие значения переменной, подстановка которых в уравнение дает верное равенство, эти значения называют корнями или решениями данного уравнения.
Определение.
Корень уравнения – это такое значение буквы (переменной), при подстановке которого уравнение обращается в верное числовое равенство.
Отметим, что корень уравнения с одной переменной также называют решением уравнения. Другими словами, решение уравнения и корень уравнения – это одно и то же.
Поясним это определение на примере. Для этого вернемся к записанному выше уравнению a+1=5. Согласно озвученному определению корня уравнения, число 4 есть корень этого уравнения, так как при подстановке этого числа вместо буквы a получаем верное равенство 4+1=5, а число 2 не является его корнем, так как ему отвечает неверное равенство вида 2+1=5.
На этот момент возникает ряд естественных вопросов: «Любое ли уравнение имеет корень, и сколько корней имеет заданное уравнение»? Ответим на них.
Существуют как уравнения, имеющие корни, так и уравнения, не имеющие корней. Например, уравнение x+1=5 имеет корень 4, а уравнение 0·x=5 не имеет корней, так как какое бы число мы не подставили в это уравнение вместо переменной x, мы получим неверное равенство 0=5.
Что касается числа корней уравнения, то существуют как уравнения, имеющие некоторое конечное число корней (один, два, три и т.д.), так и уравнения, имеющие бесконечно много корней. Например, уравнение x−2=4 имеет единственный корень 6, корнями уравнения x2=9 являются два числа −3 и 3, уравнение x·(x−1)·(x−2)=0 имеет три корня 0, 1 и 2, а решением уравнения x=x является любое число, то есть, оно имеет бесконечное множество корней.
Пару слов стоит сказать о принятой записи корней уравнения. Если уравнение не имеет корней, то обычно так и пишут «уравнение не имеет корней», или применяют знак пустого множества ∅. Если уравнение имеет корни, то их записывают через запятую, или записывают как элементы множества в фигурных скобках. Например, если корнями уравнения являются числа −1, 2 и 4, то пишут −1, 2, 4 или {−1, 2, 4}. Допустимо также записывать корни уравнения в виде простейших равенств. Например, если в уравнение входит буква x, и корнями этого уравнения являются числа 3 и 5, то можно записать x=3, x=5, также переменной часто добавляют нижние индексы x1=3, x2=5, как бы указывая номера корней уравнения. Бесконечное множество корней уравнения обычно записывают в виде числового промежутка, также при возможности используют обозначения множеств натуральных чисел N, целых чисел Z, действительных чисел R. Например, если корнем уравнения с переменной x является любое целое число, то пишут , а если корнями уравнения с переменной y является любое действительное число от 1 до 9 включительно, то записывают
.
Для уравнений с двумя, тремя и большим количеством переменных, как правило, не применяют термин «корень уравнения», в этих случаях говорят «решение уравнения». Что же называют решением уравнений с несколькими переменными? Дадим соответствующее определение.
Определение.
Решением уравнения с двумя, тремя и т.д. переменными называют пару, тройку и т.д. значений переменных, обращающую это уравнение в верное числовое равенство.
Покажем поясняющие примеры. Рассмотрим уравнение с двумя переменными x+y=7. Подставим в него вместо x число 1, а вместо y число 2, при этом имеем равенство 1+2=7. Очевидно, оно неверное, поэтому, пара значений x=1, y=2 не является решением записанного уравнения. Если же взять пару значений x=4, y=3, то после подстановки в уравнение мы придем к верному равенству 4+3=7, следовательно, эта пара значений переменных по определению является решением уравнения x+y=7.
Уравнения с несколькими переменными, как и уравнения с одной переменной, могут не иметь корней, могут иметь конечное число корней, а могут иметь и бесконечно много корней.
Пары, тройки, четверки и т.д. значений переменных часто записывают кратко, перечисляя их значения через запятую в круглых скобках. При этом записанные числа в скобках соответствуют переменным в алфавитном порядке. Поясним этот момент, вернувшись к предыдущему уравнению x+y=7. Решение этого уравнения x=4, y=3 кратко можно записать как (4, 3).
Наибольшее внимание в школьном курсе математики, алгебры и начал анализа уделяется нахождению корней уравнений с одной переменной. Правила этого процесса мы очень подробно разберем в статье решение уравнений.
Список литературы.
- Математика. 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
- Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
- Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.