Логарифмическая производная. Дифференцирование показательно степенной функции.

При дифференцировании показательно степенной функции или громоздких дробных выражений удобно пользоваться логарифмической производной. В этой статье мы рассмотрим примеры ее применения с подробными решениями.
Дальнейшее изложение подразумевает умение пользоваться таблицей производных, правилами дифференцирования и знание формулы производной сложной функции.
Вывод формулы логарифмической производной.
Сначала производим логарифмирование по основанию e, упрощаем вид функции, используя свойства логарифма, и далее находим производную неявно заданной функции:
Для примера найдем производную показательно степенной функции x в степени x.
Логарифмирование дает . По свойствам логарифма
. Дифференцирование обеих частей равенства приводит к результату:
Ответ: .
Этот же пример можно решить и без использования логарифмической производной. Можно провести некоторые преобразования и перейти от дифференцирования показательно степенной функции к нахождению производной сложной функции:
Пример.
Найти производную функции .
Решение.
В этом примере функция представляет собой дробь и ее производную можно искать с использованием правил дифференцирования. Но в силу громоздкости выражения это потребует множества преобразований. В таких случаях разумнее использовать формулу логарифмической производной
. Почему? Вы сейчас поймете.
Найдем сначала . В преобразованиях будем использовать свойства логарифма (логарифм дроби равен разности логарифмов, а логарифм произведения равен сумме логарифмов, и еще степень у выражения под знаком логарифма можно вынести как коэффициент перед логарифмом):
Эти преобразования привели нас к достаточно простому выражению, производная которого легко находится:
Подставляем полученный результат в формулу логарифмической производной и получаем ответ:
Для закрепления материала приведем еще пару примеров без подробных объяснений.
Пример.
Найдите производную показательно степенной функции
Решение.
Пример.
Найдите производную функции .
Решение.
Воспользуемся формулой логарифмической производной:
Некогда разбираться?