Таблица производных. Доказательство формул.
Рекомендуем все время держать таблицу производных перед глазами при изучении этого раздела. Давайте рассмотрим вывод формул этой таблицы. Другими словами, докажем формулы производных для каждого вида функций.
Производная постоянной.
При выводе самой первой формулы таблицы будем исходить из определения производной функции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :
Следует заметить, что под знаком предела получается выражение , которое не является неопределенностью ноль делить на ноль, так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.
Таким образом, производная постоянной функции равна нулю на всей области определения.
Пример.
Найти производные следующих постоянных функций
Решение.
В первом случае мы имеем производную натурального числа 3, во втором случае нам приходится брать производную от параметра а, который может быть любым действительным числом, в третьем - производную иррационального числа , в четвертом случае имеем производную нуля (ноль является целым числом), в пятом – производную рациональной дроби .
Ответ:
производные всех этих функций равны нулю для любого действительного x (на всей области определения)
Производная степенной функции.
Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.
Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …
Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:
Для упрощения выражения в числителе обратимся к формуле бинома Ньютона:
Следовательно,
Этим доказана формула производной степенной функции для натурального показателя.
При доказательстве формулы для любого действительного p, отличного от нуля, воспользуемся логарифмической производной (не путайте с производной логарифмической функции). Для понимания процесса, рекомендуем сначала ознакомиться с производной логарифмической функции, а также разобраться с разделами теории производная неявно заданной функции и производная сложной функции.
Следует рассмотреть два случая: при положительных x и отрицательных x.
Сначала будем полагать . В этом случае . Выполним логарифмирование равенства по основанию e и применим свойство логарифма:
Пришли к неявно заданной функции. Находим ее производную:
Осталось провести доказательство для отрицательных x.
Когда показатель p представляет собой четное число, то степенная функция определена и при , причем является четной (смотрите раздел основные элементарные функции, их свойства и графики). То есть, . В этом случае и также можно использовать доказательство через логарифмическую производную.
Когда показатель p представляет собой нечетное число, то степенная функция определена и при , причем является нечетной. То есть, . В этом случае и логарифмическую производную использовать нельзя. Для доказательства формулы в этом случае можно воспользоваться правилами дифференцирования и правилом нахождения производной сложной функции:
Последний переход возможен в силу того, что если p - нечетное число, то p-1 либо четное число, либо нуль (при p=1), поэтому, для отрицательных x справедливо равенство .
Таким образом, формула производной степенной функции доказана для любого действительного p.
Пример.
Найти производные функций .
Решение.
Первую и третью функцию приведем к табличному виду , используя свойства степени, и применим формулу производной степенной функции:
Производная показательной функции.
Вывод формулы производной приведем на основе определения:
Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.
Выполним подстановку в исходный предел:
Если вспомнить второй замечательный предел, то придем к формуле производной показательной функции:
Пример.
Найти производные показательных функций .
Решение.
Воспользуемся доказанной выше формулой производной показательной функции из таблицы и свойствами логарифма.
Производная логарифмической функции.
Докажем формулу производной логарифмической функции для всех x из области определения и всех допустимых значениях основания a логарифма. По определению производной имеем:
Как Вы заметили, при доказательстве преобразования проводились с использованием свойств логарифма. Равенство справедливо в силу второго замечательного предела.
Пример.
Вычислить производные логарифмических функций .
Решение.
Формулу мы уже вывели, так давайте ею и воспользуемся (в первом случае основание логарифма равно натуральному логарифму трех a = ln3, во втором a = e):
Таким образом, производная натурального логарифма равна единице деленной на x.
Производные тригонометрических функций.
Для вывода формул производных тригонометрических функций нам придется вспомнить некоторые формулы тригонометрии, а также первый замечательный предел.
По определению производной для функции синуса имеем .
Воспользуемся формулой разности синусов:
Осталось обратиться к первому замечательному пределу:
Таким образом, производная функции sin x есть cos x.
Абсолютно аналогично доказывается формула производной косинуса.
Следовательно, производная функции cos x есть –sin x.
Вывод формул таблицы производных для тангенса и котангенса проведем с использованием доказанных правил дифференцирования (производная дроби).
Производные обратных тригонометрических функций.
Доказательство формул производных арксинуса, арккосинуса, арктангенса и арккотангенса подробно рассмотрено в разделе производная обратной функции, поэтому не будем повторяться.
Производные гиперболических функций.
Правила дифференцирования и формула производной показательной функции из таблицы производных позволяют вывести формулы производных гиперболического синуса, косинуса, тангенса и котангенса.
При решении задач дифференцирования мы будем постоянно обращаться к таблице производных основных функций, иначе зачем мы ее составляли и доказывали каждую формулу. Рекомендуем запомнить все эти формулы, в дальнейшем это сэкономит Вам массу времени.
Некогда разбираться?